6,962 research outputs found

    Following Black Hole Scaling Relations Through Gas-Rich Mergers

    Get PDF
    We present black hole mass measurements from kinematic modeling of high-spatial resolution integral field spectroscopy of the inner regions of 9 nearby (ultra-)luminous infrared galaxies in a variety of merger stages. These observations were taken with OSIRIS and laser guide star adaptive optics on the Keck I and Keck II telescopes, and reveal gas and stellar kinematics inside the spheres of influence of these supermassive black holes. We find that this sample of black holes are overmassive (1079\sim10^{7-9} MSun_{Sun}) compared to the expected values based on black hole scaling relations, and suggest that the major epoch of black hole growth occurs in early stages of a merger, as opposed to during a final episode of quasar-mode feedback. The black hole masses presented are the dynamical masses enclosed in \sim25pc, and could include gas which is gravitationally bound to the black hole but has not yet lost sufficient angular momentum to be accreted. If present, this gas could in principle eventually fuel AGN feedback or be itself blown out from the system.Comment: accepted to Ap

    The Psychometric Evaluation of Human Life Histories:A Reply to Figueredo, Cabeza de Baca, Black, Garcia, Fernandes, Wolf, and Woodley (2015)

    Get PDF
    A recent critique of Copping, Campbell, and Muncer raised several issues concerning the validity of psychometric assessment techniques in the study of life history (LH) strategies. In this reply, some of our key concerns about relying on aggregated psy- chometric measures are explained, and we raise questions generally regarding the use of higher order factor structures. Responses to some of the statistical issues raised by Figueredo et al. are also detailed. We stand by our original conclusions and call for more careful consideration of instruments used to evaluate hypotheses derived from LH theory

    Age-Dependent Performance on Pro-point and Anti-point Tasks

    Get PDF
    Changes in prefrontal cortex are thought to be responsible for many of the characteristic behavioral changes that are seen during adolescence and late adulthood. Disruption of prefrontal cortex is an early sign for many developmental, neurological, and psychiatric disorders. Goal directed eye movements, such as Anti-saccades, have been shown to have high sensitivity as a gross assessment of prefrontal lobe function. Previous studies on the developmental changes of saccades across age have shown that stimulus-driven and goal-directed eye movements follow a U-shaped trend with peaks in performance occuring during adolescence. Using novel tablet-based pointing tasks, modeled on eye movement tests, this study aims to provide a preliminary understanding of how age affects manual pointing performance, in order to more easily track behavioral changes of the prefrontal cortex. In this study, 82 participants between the ages of 10 and 63 were recruited to participate. Results show that similarly to saccades, manual pointing responses are age dependent with fastest response times found during late adolescence to early adulthood (U-shaped curves). Importantly, we also demonstrated significant differences in the effect of age in stimulus-driven (Pro-point) and goal-directed (Anti-point) pointing tasks. The effect of age on response time (RT) is greater on Anti-point compared to Pro-point task (with a 79 ms greater mean decrease during early development and a 148 ms greater mean increase during later aging). Further, for Pro-point task, the U-shaped curve flattens at about 45 years whereas for Anti-point task the U-shaped curve continues up to the maximum age tested (about 60 years). This dissociation between age-related changes in sensorimotor and cognitive performance suggests independent development of associated brain circuity. Thus, changes of performance in disease that are specific for age and task may be able to help identify brain circuitry involved. Finally, given that these tablet-based pointing tasks show similar age-related patterns reported previously with eye-tracking technology, our findings suggest that such tablet-based tasks may provide an inexpensive, quick, and more practical way of detecting neurological deficits or tracking cognitive changes

    Expected Shannon entropy and Shannon differentiation between subpopulations for neutral genes under the finite island model

    Full text link
    <div><p>Shannon entropy <i>H</i> and related measures are increasingly used in molecular ecology and population genetics because (1) unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many applications; (2) these measures connect directly to the rich predictive mathematics of information theory; (3) Shannon entropy is completely additive and has an explicitly hierarchical nature; and (4) Shannon entropy-based differentiation measures obey strong monotonicity properties that heterozygosity-based measures lack. We derive simple new expressions for the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral locus in a single isolated population under two models of mutation: the infinite allele model and the stepwise mutation model. Surprisingly, this complex stochastic system for each model has an entropy expressable as a simple combination of well-known mathematical functions. Moreover, entropy- and heterozygosity-based measures for each model are linked by simple relationships that are shown by simulations to be approximately valid even far from equilibrium. We also identify a bridge between the two models of mutation. We apply our approach to subdivided populations which follow the finite island model, obtaining the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the total population. We also derive the expected mutual information and normalized mutual information (“Shannon differentiation”) between subpopulations at equilibrium, and identify the model parameters that determine them. We apply our measures to data from the common starling (<i>Sturnus vulgaris</i>) in Australia. Our measures provide a test for neutrality that is robust to violations of equilibrium assumptions, as verified on real world data from starlings.</p></div

    Treatment of Cluster Headache in Pregnancy and Lactation

    Get PDF
    Cluster headache (CH) is a neurovascular headache syndrome characterized by headache attacks that occur with a circadian and circannual periodicity. The calculated prevalence of CH in reproductive-aged women is 7.5 of 100,000 women. Although data suggest that CH during pregnancy is a relatively rare condition, when it does occur, attacks remain unchanged in character and severity in the majority of patients. Thus, treatment of CH in pregnant and lactating women may remain a significant therapeutic challenge. This manuscript briefly reviews the epidemiology of CH in women, and then focuses on treatment options for both acute and preventative management of CH in pregnant and lactating women

    Multitargeted Imidazoles: Potential Therapeutic Leads for Alzheimer's and Other Neurodegenerative Diseases

    Get PDF
    Alzheimer’s disease (AD) is a complex, multifactorial disease in which different neuropathological mechanisms are likely involved, including those associated with pathological tau and Aβ species as well as neuroinflammation. In this context, the development of single multitargeted therapeutics directed against two or more disease mechanisms could be advantageous. Starting from a series of 1,5-diarylimidazoles with microtubule (MT)-stabilizing activity and structural similarities with known NSAIDs, we conducted structure−activity relationship studies that led to the identification of multitargeted prototypes with activities as MT-stabilizing agents and/or inhibitors of the cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) pathways. Several examples are brain-penetrant and exhibit balanced multitargeted in vitro activity in the low μM range. As brain-penetrant MT-stabilizing agents have proven effective against tau-mediated neurodegeneration in animal models, and because COX- and 5-LOX-derived eicosanoids are thought to contribute to Aβ plaque deposition, these 1,5-diarylimidazoles provide tools to explore novel multitargeted strategies for AD and other neurodegenerative diseases

    A New Phase of Matter: Quark-Gluon Plasma Beyond the Hagedorn Critical Temperature

    Get PDF
    I retrace the developments from Hagedorn's concept of a limiting temperature for hadronic matter to the discovery and characterization of the quark-gluon plasma as a new state of matter. My recollections begin with the transformation more than 30 years ago of Hagedorn's original concept into its modern interpretation as the "critical" temperature separating the hadron gas and quark-gluon plasma phases of strongly interacting matter. This was followed by the realization that the QCD phase transformation could be studied experimentally in high-energy nuclear collisions. I describe here my personal effort to help develop the strangeness experimental signatures of quark and gluon deconfinement and recall how the experimental program proceeded soon to investigate this idea, at first at the SPS, then at RHIC, and finally at LHC. As it is often the case, the experiment finds more than theory predicts, and I highlight the discovery of the "perfectly" liquid quark-gluon plasma at RHIC. I conclude with an outline of future opportunities, especially the search for a critical point in the QCD phase diagram.Comment: To appear in {\em Melting Hadrons, Boiling Quarks} by Rolf Hagedorn and Johan Rafelski (editor), Springer Publishers, 2015 (open access

    A young testicular microenvironment protects Leydig cells against age‐related dysfunction in a mouse model of premature aging

    Get PDF
    Testicular Leydig cells (LCs) are the primary source of circulating androgen in men. As men age, circulating androgen levels decline. However, whether reduced LC steroidogenesis results from specific effects of aging within LCs or reflects degenerative alterations to the wider supporting microenvironment is unclear; inability to separate intrinsic LC aging from that of the testicular microenvironment in vivo has made this question difficult to address. To resolve this, we generated novel mouse models of premature aging, driven by CDGSH iron sulfur domain 2 ( Cisd2) deletion, to separate the effects of cell intrinsic aging from extrinsic effects of aging on LC function. At 6 mo of age, constitutive Cisd2-deficient mice display signs of premature aging, including testicular atrophy, reduced LC and Sertoli cell (SC) number, decreased circulating testosterone, increased luteinizing hormone/testosterone ratio, and decreased expression of steroidogenic mRNAs, appropriately modeling primary testicular dysfunction observed in aging men. However, mice with Cisd2 deletion (and thus premature aging) restricted to either LCs or SCs were protected against testicular degeneration, demonstrating that age-related LCs dysfunction cannot be explained by intrinsic aging within either the LC or SC lineages alone. We conclude that age-related LC dysfunction is largely driven by aging of the supporting testicular microenvironment.-Curley, M., Milne, L., Smith, S., Jørgensen, A., Frederiksen, H., Hadoke, P., Potter, P., Smith, L. B. A Young testicular microenvironment protects Leydig cells against age-related dysfunction in a mouse model of premature aging

    Intergenerational education mobility and depressive symptoms in a population of Mexican origin

    Get PDF
    Low educational attainment has been associated with depression among Latinos. However, few studies have collected intergenerational data to assess mental health effects of educational mobility across generations
    corecore