4,036 research outputs found

    Social Entrepreneurship

    Get PDF

    A Coulomb Gauge Model of Mesons

    Get PDF
    A model of mesons which is based on the QCD Hamiltonian in Coulomb gauge is presented. The model relies on a novel quasiparticle basis to improve the reliability of the Fock space expansion. It is also relativistic, yields chiral pions, and is tightly constrained by QCD (quark masses are the only parameters). Applications to hidden flavor mesons yield results which are comparable to phenomenological constituent quark models while revealing the limitations of such models.Comment: 13 pages, 1 eps figure, 5 table

    Invariant imbedding theory of mode conversion in inhomogeneous plasmas. II. Mode conversion in cold, magnetized plasmas with perpendicular inhomogeneity

    Full text link
    A new version of the invariant imbedding theory for the propagation of coupled waves in inhomogeneous media is applied to the mode conversion of high frequency electromagnetic waves into electrostatic modes in cold, magnetized and stratified plasmas. The cases where the external magnetic field is applied perpendicularly to the direction of inhomogeneity and the electron density profile is linear are considered. Extensive and numerically exact results for the mode conversion coefficients, the reflectances and the wave electric and magnetic field profiles inside the inhomogeneous plasma are obtained. The dependences of mode conversion phenomena on the magnitude of the external magnetic field, the incident angle and the wave frequency are explored in detail.Comment: 11 figures, to be published in Physics of Plasma

    Proposal for interferometric detection of topological defects in modulated superfluids

    Full text link
    Attractive interactions between fermions can produce a superfluid ground state, in which pairs of up and down spins swirl together in a coordinated, coherent dance. How is this dance affected by an imbalance in the population of up and down fermions? Do the extra fermions stand on the sides, or do they disrupt the dance? The most intriguing possibility is the formation of a modulated superfluid state, known as an LO phase, in which the excess fermions self-organize into domain walls where the pairing amplitude changes sign. Despite fifty years of theoretical and experimental work, there has so far been no direct observation of an LO phase. Here we propose an experiment in which two fermion clouds, prepared with unequal population imbalances, are allowed to expand and interfere. A zipper pattern in the interference fringes is unequivocal evidence of LO physics. Furthermore, because the experiment is resolved in time and in two spatial directions, we expect an observable signature even at finite temperatures (when thermal fluctuations destroy long-range LO order averaged over time)

    Hybrid Decays

    Get PDF
    The heavy quark expansion of Quantum Chromodynamics and the strong coupling flux tube picture of nonperturbative glue are employed to develop the phenomenology of hybrid meson decays. The decay mechanism explicitly couples gluonic degrees of freedom to the pair produced quarks and hence does not obey the well known, but model-dependent, selection rule which states that hybrids do not decay to pairs of L=0 mesons. However, the nonperturbative nature of gluonic excitations in the flux tube picture leads to a new selection rule: light hybrids do not decay to pairs of identical mesons. New features of the model are highlighted and partial widths are presented for several low lying hybrid states.Comment: 13 pages, 1 table, revte

    From Current to Constituent Quarks: a Renormalization Group Improved Hamiltonian-based Description of Hadrons

    Get PDF
    A model which combines the perturbative behavior of QCD with low energy phenomenology in a unified framework is developed. This is achieved by applying a similarity transformation to the QCD Hamiltonian which removes interactions between the ultraviolet cutoff and an arbitrary lower scale. Iteration then yields a renormalization group improved effective Hamiltonian at the hadronic energy scale. The procedure preserves the standard ultraviolet behavior of QCD. Furthermore, the Hamiltonian evolves smoothly to a phenomenological low energy behavior below the hadronic scale. This method has the benefit of allowing radiative corrections to be directly incorporated into nonperturbative many-body techniques. It is applied to Coulomb gauge QCD supplemented with a low energy linear confinement interaction. A nontrivial vacuum is included in the analysis via a Bogoliubov-Valatin transformation. Finally, the formalism is applied to the vacuum gap equation, the quark condensate, and the dynamical quark mass.Comment: 36 pages, RevTeX, 5 ps figures include

    Hybrid Meson Decay Phenomenology

    Get PDF
    The phenomenology of a newly developed model of hybrid meson decay is developed. The decay mechanism is based on the heavy quark expansion of QCD and the strong coupling flux tube picture of nonperturbative glue. A comprehensive list of partial decay widths of a wide variety of light, ssˉs\bar s, ccˉc\bar c, and bbˉb \bar b hybrid mesons is presented. Results which appear approximately universal are highlighted along with those which distinguish different hybrid decay models. Finally, we examine several interesting hybrid candidates in detail.Comment: 37 pages, 2 figures, 6 tables, Revte

    Renormalized Effective QCD Hamiltonian: Gluonic Sector

    Get PDF
    Extending previous QCD Hamiltonian studies, we present a new renormalization procedure which generates an effective Hamiltonian for the gluon sector. The formulation is in the Coulomb gauge where the QCD Hamiltonian is renormalizable and the Gribov problem can be resolved. We utilize elements of the Glazek and Wilson regularization method but now introduce a continuous cut-off procedure which eliminates non-local counterterms. The effective Hamiltonian is then derived to second order in the strong coupling constant. The resulting renormalized Hamiltonian provides a realistic starting point for approximate many-body calculations of hadronic properties for systems with explicit gluon degrees of freedom.Comment: 25 pages, no figures, revte

    Spanish Teachers\u27 Sense of Humor and Student Performance on the National Spanish Exams

    Get PDF
    Research suggests that second/foreign language teachers\u27 sense of humor is directly related to many outcomes for teachers and their students. This research investigates the relationship between the perceived sense of humor of in-service Spanish teachers\u27 (n = 102) and their students\u27 (n = 5,419) score on the National Spanish Exams using the affective filter hypothesis as a conceptual framework. Statistical analyses indicate that Spanish teacher sense of humor is related to student achievement on the exams. This research has implications for language teachers and teacher educators
    • …
    corecore