3,389 research outputs found

    Towards Structured Deep Neural Network for Automatic Speech Recognition

    Full text link
    In this paper we propose the Structured Deep Neural Network (Structured DNN) as a structured and deep learning algorithm, learning to find the best structured object (such as a label sequence) given a structured input (such as a vector sequence) by globally considering the mapping relationships between the structure rather than item by item. When automatic speech recognition is viewed as a special case of such a structured learning problem, where we have the acoustic vector sequence as the input and the phoneme label sequence as the output, it becomes possible to comprehensively learned utterance by utterance as a whole, rather than frame by frame. Structured Support Vector Machine (structured SVM) was proposed to perform ASR with structured learning previously, but limited by the linear nature of SVM. Here we propose structured DNN to use nonlinear transformations in multi-layers as a structured and deep learning algorithm. It was shown to beat structured SVM in preliminary experiments on TIMIT

    Personalized Acoustic Modeling by Weakly Supervised Multi-Task Deep Learning using Acoustic Tokens Discovered from Unlabeled Data

    Full text link
    It is well known that recognizers personalized to each user are much more effective than user-independent recognizers. With the popularity of smartphones today, although it is not difficult to collect a large set of audio data for each user, it is difficult to transcribe it. However, it is now possible to automatically discover acoustic tokens from unlabeled personal data in an unsupervised way. We therefore propose a multi-task deep learning framework called a phoneme-token deep neural network (PTDNN), jointly trained from unsupervised acoustic tokens discovered from unlabeled data and very limited transcribed data for personalized acoustic modeling. We term this scenario "weakly supervised". The underlying intuition is that the high degree of similarity between the HMM states of acoustic token models and phoneme models may help them learn from each other in this multi-task learning framework. Initial experiments performed over a personalized audio data set recorded from Facebook posts demonstrated that very good improvements can be achieved in both frame accuracy and word accuracy over popularly-considered baselines such as fDLR, speaker code and lightly supervised adaptation. This approach complements existing speaker adaptation approaches and can be used jointly with such techniques to yield improved results.Comment: 5 pages, 5 figures, published in IEEE ICASSP 201
    • …
    corecore