2 research outputs found

    A Hierarchical Metal Nanowire Network Structure for Durable, Cost-Effective, Stretchable, and Breathable Electronics

    No full text
    Polymer nanofiber-based porous structures ("breathable devices") have been developed for breathable epidermal electrodes, piezoelectric nanogenerators, temperature sensors, and strain sensors, but their applications are limited because increasing the porosity reduces device robustness. Herein, we report an approach to produce ultradurable, cost-effective breathable electronics using a hierarchical metal nanowire network and an optimized photonic sintering process. Photonic sintering significantly reduces the sheet resistance (16.25 to 6.32 ω sq-1) and is 40% more effective than conventional thermal annealing (sheet resistance: 12.99 ω sq-1). The mechanical durability of the sintered (648.9 ω sq-1) sample is notably improved compared to that of the untreated (disconnected) and annealed (19.1 kω sq-1) samples after 10,000 deformation cycles at 40% tensile strain. The sintered sample exhibits ∼29 times less change in electrical performance compared to the thermally annealed sample. This approach will lead to the development of affordable and ultradurable commercial breathable electronics. © 2021 American Chemical Society.FALS

    Improved Wound Healing and Skin Regeneration Ability of 3,2′-Dihydroxyflavone-Treated Mesenchymal Stem Cell-Derived Extracellular Vesicles

    No full text
    Flavonoids enhance the self-renewal and differentiation potential of mesenchymal stem cells (MSCs) and have therapeutic activities, including regenerative, anti-oxidative, and anti-inflammatory effects. Recent studies have revealed that MSC-derived extracellular vesicles (MSC-EVs) have therapeutic effects on tissue regeneration and inflammation. To facilitate further research on the therapeutic potential of MSC-EVs derived from flavonoid-treated MSCs, we surveyed the production of EVs and their therapeutic applications in wound regeneration. MSCs treated with flavonoids enhanced EV production twofold compared with naïve MSCs. EVs produced by MSCs treated with flavonoids (Fla-EVs) displayed significant anti-inflammatory and wound-healing effects in vitro. The wound-healing capacity of EVs was mediated by the upregulation of mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling. Interestingly, the protein level of p-ERK under inhibition of MEK signals was maintained in Fla-EV-treated fibroblasts, suggesting that Fla-EVs have a higher therapeutic potential than naïve MSC-EVs (Cont-EVs) in wound healing. Moreover, the in vivo wound closure effect of the Fla-EVs showed significant improvement compared with that of the flavonoid-only treatment group and the Cont-EVs. This study provides a strategy for the efficient production of EVs with superior therapeutic potential using flavonoids
    corecore