53,261 research outputs found

    When do neutrinos cease to oscillate?

    Get PDF
    In order to investigate when neutrinos cease to oscillate in the framework of quantum field theory, we have reexamined the wave packet treatment of neutrino oscillations by taking different sizes of the wave packets of the particles involved in the production and detection processes. The treatment is shown to be considerably simplified by using the Grimus-Stockinger theorem which enables us to carry out the integration over the momentum of the propagating neutrino. Our new results confirm the recent observation by Kiers, Nussinov and Weiss that a precise measurement of the energies of the particles involved in the detection process would increase the coherence length. We also present a precise definition of the coherence length beyond which neutrinos cease to oscillate.Comment: 10 pages, no figure

    Resonance structures in the multichannel quantum defect theory for the photofragmentation processes involving one closed and many open channels

    Get PDF
    The transformation introduced by Giusti-Suzor and Fano and extended by Lecomte and Ueda for the study of resonance structures in the multichannel quantum defect theory (MQDT) is used to reformulate MQDT into the forms having one-to-one correspondence with those in Fano's configuration mixing (CM) theory of resonance for the photofragmentation processes involving one closed and many open channels. The reformulation thus allows MQDT to have the full power of the CM theory, still keeping its own strengths such as the fundamental description of resonance phenomena without an assumption of the presence of a discrete state as in CM.Comment: 7 page

    Alternative experimental evidence for chiral restoration in excited baryons

    Full text link
    Given existing empirical spectral patterns of excited hadrons it has been suggested that chiral symmetry is approximately restored in excited hadrons at zero temperature/density (effective symmetry restoration). If correct, this implies that mass generation mechanisms and physics in excited hadrons is very different as compared to the lowest states. One needs an alternative and independent experimental information to confirm this conjecture. Using very general chiral symmetry arguments it is shown that strict chiral restoration in a given excited nucleon forbids its decay into the N \pi channel. Hence those excited nucleons which are assumed from the spectroscopic patterns to be in approximate chiral multiplets must only "weakly" decay into the N \pi channel, (f_{N^*N\pi}/f_{NN\pi})^2 << 1. However, those baryons which have no chiral partner must decay strongly with a decay constant comparable with f_{NN\pi}. Decay constants can be extracted from the existing decay widths and branching ratios. It turnes out that for all those well established excited nucleons which can be classified into chiral doublets N_+(1440) - N_-(1535), N_+(1710) - N_-(1650), N_+(1720) - N_-(1700), N_+(1680) - N_-(1675), N_+(2220) - N_-(2250), N_+(?) - N_-(2190), N_+(?) - N_-(2600), the ratio is (f_{N^*N\pi}/f_{NN\pi})^2 ~ 0.1 or much smaller for the high-spin states. In contrast, the only well established excited nucleon for which the chiral partner cannot be identified from the spectroscopic data, N(1520), has a decay constant into the N\pi channel that is comparable with f_{NN\pi}. This gives an independent experimental verification of the chiral symmetry restoration scenario.Comment: 4 pp. A new footnote with an alternative proof of impossibility of parity doublet decay into pi + N is added. To appear in Phys. Rev. Let

    Identification of the Beutler-Fano formula in eigenphase shifts and eigentime delays near a resonance

    Get PDF
    Eigenphase shifts and eigentime delays near a resonance for a system of one discrete state and two continua are shown to be functionals of the Beutler- Fano formulas using appropriate dimensionless energy units and line profile indices. Parameters responsible for the avoided crossing of eigenphase shifts and eigentime delays are identified. Similarly, parameters responsible for the eigentime delays due to a frame change are identified. With the help of new parameters, an analogy with the spin model is pursued for the S matrix and time delay matrix. The time delay matrix is shown to comprise three terms, one due to resonance, one due to a avoided crossing interaction, and one due to a frame change. It is found that the squared sum of time delays due to the avoided crossing interaction and frame change is unity.Comment: 17 pages, 3 figures, RevTe

    Chemical equilibrium and stable stratification of a multi-component fluid: thermodynamics and application to neutron stars

    Get PDF
    A general thermodynamic argument shows that multi-component matter in full chemical equilibrium, with uniform entropy per baryon, is generally stably stratified. This is particularly relevant for neutron stars, in which the effects of entropy are negligible compared to those of the equilibrium composition gradient established by weak interactions. It can therefore be asserted that, regardless of the uncertainties in the equation of state of dense matter, neutron stars are stably stratified. This has important, previously discussed consequences for their oscillation modes, magnetic field evolution, and internal angular momentum transport.Comment: AASTeX, 8 pages, including 1 PS figure. Accepted for publication in The Astrophysical Journa
    • …
    corecore