1,181 research outputs found

    Vortices and the entrainment transition in the 2D Kuramoto model

    Get PDF
    We study synchronization in the two-dimensional lattice of coupled phase oscillators with random intrinsic frequencies. When the coupling KK is larger than a threshold KEK_E, there is a macroscopic cluster of frequency-synchronized oscillators. We explain why the macroscopic cluster disappears at KEK_E. We view the system in terms of vortices, since cluster boundaries are delineated by the motion of these topological defects. In the entrained phase (K>KEK>K_E), vortices move in fixed paths around clusters, while in the unentrained phase (K<KEK<K_E), vortices sometimes wander off. These deviant vortices are responsible for the disappearance of the macroscopic cluster. The regularity of vortex motion is determined by whether clusters behave as single effective oscillators. The unentrained phase is also characterized by time-dependent cluster structure and the presence of chaos. Thus, the entrainment transition is actually an order-chaos transition. We present an analytical argument for the scaling KEKLK_E\sim K_L for small lattices, where KLK_L is the threshold for phase-locking. By also deriving the scaling KLlogNK_L\sim\log N, we thus show that KElogNK_E\sim\log N for small NN, in agreement with numerics. In addition, we show how to use the linearized model to predict where vortices are generated.Comment: 11 pages, 8 figure

    Universality in the one-dimensional chain of phase-coupled oscillators

    Get PDF
    We apply a recently developed renormalization group (RG) method to study synchronization in a one-dimensional chain of phase-coupled oscillators in the regime of weak randomness. The RG predicts how oscillators with randomly distributed frequencies and couplings form frequency-synchronized clusters. Although the RG was originally intended for strong randomness, i.e. for distributions with long tails, we find good agreement with numerical simulations even in the regime of weak randomness. We use the RG flow to derive how the correlation length scales with the width of the coupling distribution in the limit of large coupling. This leads to the identification of a universality class of distributions with the same critical exponent ν\nu. We also find universal scaling for small coupling. Finally, we show that the RG flow is characterized by a universal approach to the unsynchronized fixed point, which provides physical insight into low-frequency clusters.Comment: 14 pages, 10 figure

    Automated Pneumothorax Diagnosis using Deep Neural Networks

    Get PDF
    Thoracic ultrasound can provide information leading to rapid diagnosis of pneumothorax with improved accuracy over the standard physical examination and with higher sensitivity than anteroposterior chest radiography. However, the clinical We have Furthermore, remote environments, such as the battlefield or deep-space exploration, may lack expertise for diagnosing developed an automated image interpretation pipeline for the analysis of thoracic ultrasound data and the classification of pneumothorax events to provide decision support in such situations. Our pipeline consists of image preprocessing, data augmentation, and deep learning architectures for medical diagnosis. In this work, we demonstrate that robust, accurate interpretation of chest images and video can be achieved using deep neural networks. A number of novel image processing techniques were employed to achieve this result. Affine transformations were applied for data augmentation. Hyperparameters were optimized for learning rate, dropout regularization, batch size, and epoch iteration by a sequential model-based Bayesian approach. In addition, we utilized pretrained architecturesinterpretation of a patient medical image is highly operator dependent. certain pathologies., applying transfer learning and fine-tuning techniques to fully connected layers. Our pipeline yielded binary classification validation accuracies of 98.3% for M-mode images and 99.8% with B-mode video frames

    IS ONLINE VIDEO-BASED EDUCATION AN EFFECTIVE METHOD TO TEACH BASIC SURGICAL SKILLS TO STUDENTS AND SURGICAL TRAINEES? A SYSTEMATIC REVIEW AND META-ANALYSIS

    Get PDF
    BACKGROUND: Online education has been increasingly utilized over the past decades. The COVID-19 pandemic accelerated the transition of conventional face-to-face curricula to online platforms, with limited evidence for its teaching efficacy. This systematic review aims to assess the effectiveness of online video-based education compared with standard conventional education in teaching basic surgical skills to surgical trainees and students undergoing medical training. METHODS: We performed a literature search in Embase, Medline, Cochrane CENTRAL and Scopus from inception until February 2022. Studies included were randomised controlled trials (RCTs) and observational studies. We included randomised controlled trials only for meta-analysis. The primary outcome was surgical skill proficiency. The secondary outcomes were participant perception, confidence and satisfaction. Two authors independently assessed the search results for eligibility, extracted the data and assessed the risk of bias using the Cochrane Risk of Bias tool 2. Where appropriate, we performed random effects meta-analyses of the pooled study data to calculate a standardized mean difference. RESULTS: A total of 11 studies met the inclusion criteria totaling 715 participants; 603 were included in qualitative analysis and 380 in meta-analysis. All included studies were assessed as having a low risk of bias. The majority of studies found no significant difference between conventional and video-based education in teaching basic surgical skills, three studies found video-based education was superior and one study found conventional education was superior. There was no statistically significant difference in skill proficiency between the two groups (standardized mean difference of -0.02 (95% CI: -0.34, 0.30); p=0.90). Video-based education results in an equivalent improvement in confidence and satisfaction rates. Additional benefits of video-based education include convenience, accessibility and efficiency. CONCLUSIONS: Basic surgical skills can be taught as effectively through online video-based education as conventional teaching methods. Online education should be utilized as an adjunct to medical curricula beyond the COVID-19 era

    Sex Chromosome Turnover in Bent-Toed Geckos (\u3cem\u3eCyrtodactylus\u3c/em\u3e)

    Get PDF
    Lizards and snakes (squamates) are known for their varied sex determining systems, and gecko lizards are especially diverse, having evolved sex chromosomes independently multiple times. While sex chromosomes frequently turnover among gecko genera, intrageneric turnovers are known only from Gekko and Hemidactylus. Here, we used RADseq to identify sex-specific markers in two species of Burmese bent-toed geckos. We uncovered XX/XY sex chromosomes in Cyrtodactylus chaunghanakwaensis and ZZ/ZW sex chromosomes in Cyrtodactylus pharbaungensis. This is the third instance of intrageneric turnover of sex chromosomes in geckos. Additionally, Cyrtodactylus are closely related to another genus with intrageneric turnover, Hemidactylus. Together, these data suggest that sex chromosome turnover may be common in this clade, setting them apart as exceptionally diverse in a group already known for diverse sex determination systems

    MAP4K3 mediates amino acid-dependent regulation of autophagy via phosphorylation of TFEB

    Get PDF
    Autophagy is the major cellular pathway by which macromolecules are degraded, and amino acid depletion powerfully activates autophagy. MAP4K3, or germinal-center kinase-like kinase, is required for robust cell growth in response to amino acids, but the basis for MAP4K3 regulation of cellular metabolic disposition remains unknown. Here we identify MAP4K3 as an amino acid-dependent regulator of autophagy through its phosphorylation of transcription factor EB (TFEB), a transcriptional activator of autophagy, and through amino acid starvation-dependent lysosomal localization of MAP4K3. We document that MAP4K3 physically interacts with TFEB and MAP4K3 inhibition is sufficient for TFEB nuclear localization, target gene transactivation, and autophagy, even when mTORC1 is activated. Moreover, MAP4K3 serine 3 phosphorylation of TFEB is required for TFEB interaction with mTORC1-Rag GTPase-Ragulator complex and TFEB cytosolic sequestration. Our results uncover a role for MAP4K3 in the control of autophagy and reveal MAP4K3 as a central node in nutrient-sensing regulation

    Determinants of personal exposure to fine particulate matter (PM2.5) adult subjects in Hong Kong

    Get PDF
    Personal monitoring for fine particulate matter (PM2.5) was conducted for adults (48 subjects, 18-63 years of age) in Hong Kong during the summer and winter of 2014-2015. All filters were analyzed for PM2.5 mass and constituents (including carbonaceous aerosols, water-soluble ions, and elements). We found that season (p = 0.02) and occupation (p &lt; 0.001) were significant factors affecting the strength of the personal-ambient PM2.5 associations. We applied mixed-effects models to investigate the determinants of personal exposure to PM2.5 mass and constituents, along with within- and between-individual variance components. Ambient PM2.5 was the dominant predictor of (R-2 = 0.12-0.59, p &lt; 0.01) and the largest contributor (&gt;37.3%) to personal exposures for PM2.5 mass and most components. For all subjects, a one-unit (2.72 mu g/m(3)) increase in ambient PM2.5 was associated with a 0.75 mu g/m(3) (95% CI: 0.59-0.94 mu g/m(3)) increase in personal PM2.5 exposure. The adjusted mixed-effects models included information extracted from individual&#39;s activity diaries as covariates. The results showed that season, occupation, time indoors at home, in transit, and cleaning were significant determinants for PM2.5 components in personal exposure (R-beta(2) = 0.06-0.63, p &lt; 0.05), contributing to 3.0-70.4% of the variability. For onehour extra time spent at home, in transit; and cleaning an average increase of 1.7-3.6% (ammonium, sulfate, nitrate, sulfur), 2.7-12.3% (elemental carbon, ammonium, titanium, iron), and 8.7-19.4% (ammonium, magnesium ions, vanadium) in components of personal PM2.5 were observed, respectively. In this research, the within-individual variance component dominated the total variability for all investigated exposure data except PM2.5 and EC. Results from this study indicate that performing long-term personal monitoring is needed for examining the associations of mass and constituents of personal PM2.5 with health outcomes in epidemiological studies by describing the impacts of individual-specific data on personal exposures. (C) 2018 Elsevier B.V. All rights reserved

    New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures.

    Get PDF
    CATH version 3.5 (Class, Architecture, Topology, Homology, available at http://www.cathdb.info/) contains 173 536 domains, 2626 homologous superfamilies and 1313 fold groups. When focusing on structural genomics (SG) structures, we observe that the number of new folds for CATH v3.5 is slightly less than for previous releases, and this observation suggests that we may now know the majority of folds that are easily accessible to structure determination. We have improved the accuracy of our functional family (FunFams) sub-classification method and the CATH sequence domain search facility has been extended to provide FunFam annotations for each domain. The CATH website has been redesigned. We have improved the display of functional data and of conserved sequence features associated with FunFams within each CATH superfamily

    Photoconductivity of biased graphene

    Full text link
    Graphene is a promising candidate for optoelectronic applications such as photodetectors, terahertz imagers, and plasmonic devices. The origin of photoresponse in graphene junctions has been studied extensively and is attributed to either thermoelectric or photovoltaic effects. In addition, hot carrier transport and carrier multiplication are thought to play an important role. Here we report the intrinsic photoresponse in biased but otherwise homogeneous graphene. In this classic photoconductivity experiment, the thermoelectric effects are insignificant. Instead, the photovoltaic and a photo-induced bolometric effect dominate the photoresponse due to hot photocarrier generation and subsequent lattice heating through electron-phonon cooling channels respectively. The measured photocurrent displays polarity reversal as it alternates between these two mechanisms in a backgate voltage sweep. Our analysis yields elevated electron and phonon temperatures, with the former an order higher than the latter, confirming that hot electrons drive the photovoltaic response of homogeneous graphene near the Dirac point
    corecore