3 research outputs found

    An Educational System Design to Support Learning Transfer from Block-based Programming Language to Text-based Programming Language

    Get PDF
    In programming education, novices normally learn block-based programming languages first, then move on to text-based programming languages. The effects of learning transfer on learning two or more languages in programming education has had positive results. However, block-based and text-based programming languages have different figurations and methods, which can occur cognitive confusion or increase cognitive overload for learners. Thus, it is necessary to develop an educational system that supports learning transfer. We suggest using the following design principles: utilization of advanced organizers, problem solving-based learning content, and simple and intuitive user interface and screen layout. Two types of screen composition modes are presented: training mode and practice mode. Future research must implement and apply this design in the educational field to verify its effectiveness

    Fabrication of double-ceramic-layer TBCs by suspension plasma spray

    Get PDF
    Rare-earth zirconates, such as La2Zr2O7 and Gd2Zr2O7, have been investigated as one of the candidates for replacing conventional yttria-stabilized zirconia (YSZ) for thermal barrier coating (TBC) applications at higher turbine inlet temperatures. Rare-earth zirconate oxides exhibit little phase transformation upon heating up to melting temperature as well as low thermal conductivity, where as their mechanical properties is inferior to those of YSZ TBCs. Double-ceramic-layer (DCL) TBCs have been investigated in order to take advantage of beneficial characteristics of both YSZ and rare-earth zirconate. In this study, the fabrication of DCL-TBCs with YSZ layer and rare-earth-zirconate top layer by using suspension plasma spray are reported. Microstructure, compositional profile, thermal conductivity, and thermal durability of DCL-TBCs are characterized. The usefulness of these DCL-TBCs is also discussed

    Laboratory information management system for COVID-19 non-clinical efficacy trial data

    Get PDF
    Background : As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research. Results : In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research. Conclusions : This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.This research was supported by the National research foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2020M3A9I2109027 and 2021M3H9A1030260)
    corecore