12,703 research outputs found

    Anisotropic Superconducting Properties of MgB2 Single Crystals

    Full text link
    In-plane electrical transport properties of MgB2 single crystals grown under high pressure of 4-6 GPa and temperature of 1400-1700oC in Mg-B-N system have been measured. For all specimens we found sharp superconducting transition around 38.1-38.3K with transition width within 0.2-0.3K. Estimated resistivity value at 40K is about 1 mkOhmcm and resistivity ratio R(273K)/R(40K) of about 4.9. Results of measurements in magnetic field up to 5.5T perpendicular to Mg and B planes and up to 9T in parallel orientation show temperature dependent anisotropy of the upper critical field with anisotropy ratio increasing from 2.2 close to Tc up to about 3 below 30K. Strong deviation of the angular dependence of Hc2 from anisotropic mass model has been also found.Comment: 10pages, including 5 figures,submitted to Physica C (in press

    Universality properties of the stationary states in the one-dimensional coagulation-diffusion model with external particle input

    Full text link
    We investigate with the help of analytical and numerical methods the reaction A+A->A on a one-dimensional lattice opened at one end and with an input of particles at the other end. We show that if the diffusion rates to the left and to the right are equal, for large x, the particle concentration c(x) behaves like As/x (x measures the distance to the input end). If the diffusion rate in the direction pointing away from the source is larger than the one corresponding to the opposite direction the particle concentration behaves like Aa/sqrt(x). The constants As and Aa are independent of the input and the two coagulation rates. The universality of Aa comes as a surprise since in the asymmetric case the system has a massive spectrum.Comment: 27 pages, LaTeX, including three postscript figures, to appear in J. Stat. Phy

    Mucus Sugar Content Shapes the Bacterial Community Structure in Thermally Stressed Acropora muricata

    Get PDF
    It has been proposed that the chemical composition of a coral’s mucus can influence the associated bacterial community. However, information on this topic is rare, and non-existent for corals that are under thermal stress. This study therefore compared the carbohydrate composition of mucus in the coral Acropora muricata when subjected to increasing thermal stress from 26°C to 31°C, and determined whether this composition correlated with any changes in the bacterial community. Results showed that, at lower temperatures, the main components of mucus were N-acetyl glucosamine and C6 sugars, but these constituted a significantly lower proportion of the mucus in thermally-stressed corals. The change in the mucus composition coincided with a shift from a γ-Proteobacteria- to a Verrucomicrobiae- and α-Proteobacteria-dominated community in the coral mucus. Bacteria in the class Cyanobacteria also started to become prominent in the mucus when the coral was thermally stressed. The increase in the relative abundance of the Verrucomicrobiae at higher temperature was strongly associated with a change in the proportion of fucose, glucose and mannose in the mucus. Increase in the relative abundance of α-Proteobacteria were associated with GalNAc and glucose, while the drop in relative abundance of γ-Proteobacteria at high temperature coincided with changes in fucose and mannose. Cyanobacteria were highly associated with arabinose and xylose. Changes in mucus composition and the bacterial community in the mucus layer occurred at 29°C, which were prior to visual signs of coral bleaching at 31°C. A compositional change in the coral mucus, induced by thermal stress could therefore be a key factor leading to a shift in the associated bacterial community. This, in turn, has the potential to impact the physiological function of the coral holobiont

    Experimentally realizable characterizations of continuous variable Gaussian states

    Full text link
    Measures of entanglement, fidelity and purity are basic yardsticks in quantum information processing. We propose how to implement these measures using linear devices and homodyne detectors for continuous variable Gaussian states. In particular, the test of entanglement becomes simple with some prior knowledge which is relevant to current experiments.Comment: 4 pages, This paper supersedes quant-ph/020315

    The half-filled Landau level - composite fermions and dipoles

    Full text link
    The composite-fermion approach as formulated in the fermion Chern-Simons theory has been very successful in describing the physics of the lowest Landau level near Landau level filling factor 1/2. Recent work has emphasized the fact that the true quasiparticles at these filling factors are electrically neutral and carry an electric dipole moment. In a previous work, we discussed at length two formulations in terms of dipolar quasiparticles. Here we briefly review one approach - termed electron-centered quasiparticles - and show how it can be extended from 1/2 to nearby filling factors where the quasiparticles carry both an electric dipole moment and an overall charge.Comment: 10 pages, minor improvements of notation and referencin

    Influence of gauge-field fluctuations on composite fermions near the half-filled state

    Full text link
    Taking into account the transverse gauge field fluctuations, which interact with composite fermions, we examine the finite temperature compressibility of the fermions as a function of an effective magnetic field ΔB=B2nehc/e\Delta B = B - 2 n_e hc/e (nen_e is the density of electrons) near the half-filled state. It is shown that, after including the lowest order gauge field correction, the compressibility goes as nμeΔωc/2T(1+A(η)η1(Δωc)21+ηT){\partial n \over \partial \mu} \propto e^{- \Delta \omega_c / 2 T} \left ( 1 + {A (\eta) \over \eta - 1} {(\Delta \omega_c)^{2 \over 1 + \eta} \over T} \right ) for TΔωcT \ll \Delta \omega_c, where Δωc=eΔBmc\Delta \omega_c = {e \Delta B \over mc}. Here we assume that the interaction between the fermions is given by v(q)=V0/q2η (1η2)v ({\bf q}) = V_0 / q^{2 - \eta} \ (1 \le \eta \le 2), where A(η)A (\eta) is a η\eta dependent constant. This result can be interpreted as a divergent correction to the activation energy gap and is consistent with the divergent renormalization of the effective mass of the composite fermions.Comment: Plain Tex, 24 pages, 5 figures available upon reques

    Finite Temperature Magnetism in Fractional Quantum Hall Systems: Composite Fermion Hartree-Fock and Beyond

    Full text link
    Using the Hamiltonian formulation of Composite Fermions developed recently, the temperature dependence of the spin polarization is computed for the translationally invariant fractional quantum Hall states at ν=1/3\nu=1/3 and ν=2/5\nu=2/5 in two steps. In the first step, the effect of particle-hole excitations on the spin polarization is computed in a Composite Fermion Hartree-Fock approximation. The computed magnetization for ν=1/3\nu=1/3 lies above the experimental results for intermediate temperatures indicating the importance of long wavelength spin fluctuations which are not correctly treated in Hartree-Fock. In the second step, spin fluctuations beyond Hartree-Fock are included for ν=1/3\nu=1/3 by mapping the problem on to the coarse-grained continuum quantum ferromagnet. The parameters of the effective continuum quantum ferromagnet description are extracted from the preceding Hartree-Fock analysis. After the inclusion of spin fluctuations in a large-N approach, the results for the finite-temperature spin polarization are in quite good agreement with the experiments.Comment: 10 pages, 8 eps figures. Two references adde
    corecore