243 research outputs found

    Pathogenesis of Nonalcoholic Steatohepatitis and Hormone-Based Therapeutic Approaches

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is an emerging global health problem and a potential risk factor for type 2 diabetes, cardiovascular disease, and chronic kidney disease. Nonalcoholic steatohepatitis (NASH), an advanced form of NAFLD, is a predisposing factor for development of cirrhosis and hepatocellular carcinoma. The increasing prevalence of NASH emphasizes the need for novel therapeutic approaches. Although therapeutic drugs against NASH are not yet available, fundamental insights into the pathogenesis of NASH have been made during the past few decades. Multiple therapeutic strategies have been developed and are currently being explored in clinical trials or preclinical testing. The pathogenesis of NASH involves multiple intracellular/extracellular events in various cell types in the liver or crosstalk events between the liver and other organs. Here, we review current findings and knowledge regarding the pathogenesis of NASH, focusing on the most recent advances. We also highlight hormone-based therapeutic approaches for treatment of NASH

    Production of interleukin 10 by islet cells accelerates immune-mediated destruction of beta cells in nonobese diabetic mice.

    Get PDF
    The T helper type 2 (Th2) cell product interleukin 10 (IL-10) inhibits the proliferation and function of Th1 lymphocytes and macrophages (M phi). The nonobese diabetic mouse strain (NOD/Shi) develops a M phi and T cell-dependent autoimmune diabetes that closely resembles human insulin-dependent diabetes mellitus (IDDM). The objective of the present study was to explore the consequences of localized production of IL-10 on diabetes development in NOD/Shi mice. Surprisingly, local production of IL-10 accelerated the onset and increased the prevalence of diabetes, since diabetes developed at 5-10 wk of age in 92% of IL-10 positive I-A beta g7/g7, I-E- mice in first (N2) and second (N3) generation backcrosses between IL-10 transgenic BALB/c mice and (NOD/Shi) mice. None of the IL-10 negative major histocompatibility complex-identical littermates were diabetic at this age. Furthermore, diabetes developed in 33% of I-A beta g7/d, I-E+ N3 mice in the presence of IL-10 before the mice were 10 wk old. Our findings support the notion that IL-10 should not simply be regarded as an immunoinhibitory cytokine, since it possesses powerful, immunostimulatory properties as well. Furthermore, our observations suggest that beta cell destruction in NOD mice may be a Th2-mediated event

    Amelioration of obesity-induced diabetes by a novel autophagy enhancer

    Get PDF
    Autophagy insufficiency due to aging, high-fat injury or genetic predisposition could be a factor in the progression of metabolic syndrome and diabetes. On the other hand, autophagy enhancement may have beneficial metabolic impact on in vivo metabolism of obese subjects. To identify novel, autophagy enhancer small molecules, we screened a chemical library using a Renilla-LC3-based luciferase assay [Lim et al. Nat Commun 9:1438]. Of the >7000 tested substances, one chemical compound, termed MSL (4-(4-fluorophenyl)sulfonyl-5-methylthio-2-phenyloxazole), (i) enhanced autophagic activity through Tfeb activation, (ii) expedited lipid clearance, probably through lipophagy, and (iii) reduced inflammasome activation through amelioration of mitochondrial dysfunction both in vitro and in vivo, leading to improved metabolic profile of mice with genetic or diet-induced obesity

    Sensitization to self (virus) antigen by in situ expression of murine interferon-gamma.

    Get PDF
    Autoimmune disease results from inflammatory destruction of tissues by aberrant self-reactive lymphocytes. We studied the autoimmune potential of T lymphocytes immunologically ignorant of viral antigens acting as self antigens and whether the host defense molecule IFN-gamma could stimulate these cells to cytotoxic competency. For this purpose, we produced double transgenic mice expressing pancreatic IFN-gamma as well as lymphocytic choriomeningitis virus (LCMV) nucleoprotein (NP) or glycoprotein (GP) antigen. 100% of the NP+/IFN-gamma+ mice became diabetic before 2 mo of age, while none of the NP single transgenic littermates and only 10% of IFN-gamma single transgenic littermates did. Strikingly, NP+/IFN-gamma+ mice spontaneously developed cytotoxic T lymphocyte activity on LCMV-infected targets and vaccinia virus-NP-infected ones without prior LCMV infection but NP+/IFN-gamma- mice did not, which indicates specific sensitization to the viral antigen by IFN-gamma. These results suggest that lymphocytes ignorant of self antigens can be activated by IFN-gamma released after immunologic stimulation such as viral infection. This mechanism may account for the loss of apparent tolerance to self antigens in autoimmune diseases such as insulin-dependent diabetes mellitus

    IL-10 is necessary and sufficient for autoimmune diabetes in conjunction with NOD MHC homozygosity.

    Get PDF
    Contrary to expectations based on in vitro experiments, we previously found that pancreatic IL-10 did not inhibit autoimmune diabetes but accelerated it in an MHC-dependent manner. Therefore, the ability of IL-10 to overcome the absence of all non-MHC diabetes susceptibility (Idd) alleles was studied in transgenic mice expressing pancreatic IL-10 backcrossed to B10.H2g7 congenic mice, which have no Idd alleles other than NOD MHC (H2g7). IL-10 transgenic backcross 1 (BC1) mice with H2g7/g7 haplotype developed clear-cut insulitis and diabetes, but neither transgenic mice with the H2g/b haplotype nor nontransgenic BC1 mice did so. Further implicating IL-10 in autoimmune diabetes, anti-IL-10 antibody treatment inhibited the development of insulitis in NOD mice. These results suggest that IL-10 may be necessary and sufficient for producing autoimmune diabetes in conjunction with NOD MHC homozygosity and that some Idd genes may be related to the regulation of IL-10

    Xenopus: An alternative model system for identifying muco-active agents

    Get PDF
    The airway epithelium in human plays a central role as the first line of defense against environmental contaminants. Most respiratory diseases such as chronic obstructive pulmonary disease (COPD), asthma, and respiratory infections, disturb normal muco-ciliary functions by stimulating the hypersecretion of mucus. Several muco-active agents have been used to treat hypersecretion symptoms in patients. Current muco-active reagents control mucus secretion by modulating either airway inflammation, cholinergic parasympathetic nerve activities or by reducing the viscosity by cleaving crosslinking in mucin and digesting DNAs in mucus. However, none of the current medication regulates mucus secretion by directly targeting airway goblet cells. The major hurdle for screening potential muco-active agents that directly affect the goblet cells, is the unavailability of in vivo model systems suitable for high-throughput screening. In this study, we developed a high-throughput in vivo model system for identifying muco-active reagents using Xenopus laevis embryos. We tested mucus secretion under various conditions and developed a screening strategy to identify potential muco-regulators. Using this novel screening technique, we identified narasin as a potential muco-regulator. Narasin treatment of developing Xenopus embryos significantly reduced mucus secretion. Furthermore, the human lung epithelial cell line, Calu-3, responded similarly to narasin treatment, validating our technique for discovering muco-active reagent

    Molecular cloning and expression of a novel human cDNA related to the diazepam binding inhibitor

    Get PDF
    AbstractIn order to isolate the unidentified autoantigens in autoimmune diabetes, a human pancreatic islet cDNA library was constructed and screened with the sera from the diabetic patients. From the library screening, one clone (DRS-1) that strongly reacted with the sera was isolated. Subsequent sequence analysis revealed that the clone was a novel cDNA related to the diazepam binding inhibitor. DRS-1 was expressed in most tissues including liver, lung, tonsil, and thymus, in addition to pancreatic islets. DRS-1 was in vitro translated and the recombinant DRS-1 protein was expressed in Escherichia coli and purified. The size of the in vitro translated or bacterially expressed DRS-1 protein was in agreement with the conceptually translated polypeptide of DRS-1 cDNA. Further studies are required to test whether or not DRS-1 is a new autoantigen in autoimmune diabetes

    Fasting Plasma Glucose Cutoff Value for the Prediction of Future Diabetes Development: A Study of Middle-Aged Koreans in a Health Promotion Center

    Get PDF
    We determined optimal fasting plasma glucose (FPG) cutoff values predictive of future diabetes development in a group of middle-aged Koreans who visited a health promotion center. The medical records of 2,964 subjects, who attended the Health Promotion Center in 1998 and 2003, were examined. Subjects were classified into four groups according to their baseline FPG values (Group 1:FPG <5.0 mM/L; Group 2: 5.0≤FPG <5.6 mM/L; Group 3: 5.6≤FPG <6.1 mM/L; Group 4: 6.1≤FPG <7.0 mM/L). No significant difference was observed between Group 1 and Group 2 in terms of diabetes incidence. However, incidence in Group 3 was significantly higher than that in Group 1 [hazards ratio 4.88 (1.65-14.41), p=0.004] and the hazards ratio in Group 4 for diabetes was 36.91 (13.11-103.61), p<0.001, versus Group 1. Receiver operator characteristics curve analysis showed that an FPG of 5.97 mM/L represents the lower limit and gives the best combination of sensitivity and specificity. Our data shows that the risk of future diabetes development started to increase below an FPG of 6.1 mM/L and suggests the importance of efforts to modify diabetes development risk factors at lower impaired fasting glucose levels
    corecore