4 research outputs found
Robust and fully automated segmentation of mandible from CT scans
Mandible bone segmentation from computed tomography (CT) scans is challenging
due to mandible's structural irregularities, complex shape patterns, and lack
of contrast in joints. Furthermore, connections of teeth to mandible and
mandible to remaining parts of the skull make it extremely difficult to
identify mandible boundary automatically. This study addresses these challenges
by proposing a novel framework where we define the segmentation as two
complementary tasks: recognition and delineation. For recognition, we use
random forest regression to localize mandible in 3D. For delineation, we
propose to use 3D gradient-based fuzzy connectedness (FC) image segmentation
algorithm, operating on the recognized mandible sub-volume. Despite heavy CT
artifacts and dental fillings, consisting half of the CT image data in our
experiments, we have achieved highly accurate detection and delineation
results. Specifically, detection accuracy more than 96% (measured by union of
intersection (UoI)), the delineation accuracy of 91% (measured by dice
similarity coefficient), and less than 1 mm in shape mismatch (Hausdorff
Distance) were found.Comment: 4 pages, 5 figures, IEEE International Symposium on Biomedical
Imaging (ISBI) 201
Relational Reasoning Network (RRN) for Anatomical Landmarking
Accurately identifying anatomical landmarks is a crucial step in deformation
analysis and surgical planning for craniomaxillofacial (CMF) bones. Available
methods require segmentation of the object of interest for precise landmarking.
Unlike those, our purpose in this study is to perform anatomical landmarking
using the inherent relation of CMF bones without explicitly segmenting them. We
propose a new deep network architecture, called relational reasoning network
(RRN), to accurately learn the local and the global relations of the landmarks.
Specifically, we are interested in learning landmarks in CMF region: mandible,
maxilla, and nasal bones. The proposed RRN works in an end-to-end manner,
utilizing learned relations of the landmarks based on dense-block units and
without the need for segmentation. For a given a few landmarks as input, the
proposed system accurately and efficiently localizes the remaining landmarks on
the aforementioned bones. For a comprehensive evaluation of RRN, we used
cone-beam computed tomography (CBCT) scans of 250 patients. The proposed system
identifies the landmark locations very accurately even when there are severe
pathologies or deformations in the bones. The proposed RRN has also revealed
unique relationships among the landmarks that help us infer several reasoning
about informativeness of the landmark points. RRN is invariant to order of
landmarks and it allowed us to discover the optimal configurations (number and
location) for landmarks to be localized within the object of interest
(mandible) or nearby objects (maxilla and nasal). To the best of our knowledge,
this is the first of its kind algorithm finding anatomical relations of the
objects using deep learning.Comment: 10 pages, 6 Figures, 3 Table