1,244 research outputs found

    Sound Demixing Challenge 2023 Music Demixing Track Technical Report: TFC-TDF-UNet v3

    Full text link
    In this report, we present our award-winning solutions for the Music Demixing Track of Sound Demixing Challenge 2023. First, we propose TFC-TDF-UNet v3, a time-efficient music source separation model that achieves state-of-the-art results on the MUSDB benchmark. We then give full details regarding our solutions for each Leaderboard, including a loss masking approach for noise-robust training. Code for reproducing model training and final submissions is available at github.com/kuielab/sdx23.Comment: 5 pages, 4 table

    Implicit Stacked Autoregressive Model for Video Prediction

    Full text link
    Future frame prediction has been approached through two primary methods: autoregressive and non-autoregressive. Autoregressive methods rely on the Markov assumption and can achieve high accuracy in the early stages of prediction when errors are not yet accumulated. However, their performance tends to decline as the number of time steps increases. In contrast, non-autoregressive methods can achieve relatively high performance but lack correlation between predictions for each time step. In this paper, we propose an Implicit Stacked Autoregressive Model for Video Prediction (IAM4VP), which is an implicit video prediction model that applies a stacked autoregressive method. Like non-autoregressive methods, stacked autoregressive methods use the same observed frame to estimate all future frames. However, they use their own predictions as input, similar to autoregressive methods. As the number of time steps increases, predictions are sequentially stacked in the queue. To evaluate the effectiveness of IAM4VP, we conducted experiments on three common future frame prediction benchmark datasets and weather\&climate prediction benchmark datasets. The results demonstrate that our proposed model achieves state-of-the-art performance

    Functionality-Driven Musculature Retargeting

    Full text link
    We present a novel retargeting algorithm that transfers the musculature of a reference anatomical model to new bodies with different sizes, body proportions, muscle capability, and joint range of motion while preserving the functionality of the original musculature as closely as possible. The geometric configuration and physiological parameters of musculotendon units are estimated and optimized to adapt to new bodies. The range of motion around joints is estimated from a motion capture dataset and edited further for individual models. The retargeted model is simulation-ready, so we can physically simulate muscle-actuated motor skills with the model. Our system is capable of generating a wide variety of anatomical bodies that can be simulated to walk, run, jump and dance while maintaining balance under gravity. We will also demonstrate the construction of individualized musculoskeletal models from bi-planar X-ray images and medical examinations.Comment: 15 pages, 20 figure

    Microfluidic device for analyzing preferential chemotaxis and chemoreceptor sensitivity of bacterial cells toward carbon sources

    Get PDF
    We present a novel microfluidic device that enables high sensitive analyses of the chemotactic response of motile bacterial cells (Escherichia coli) that swim toward a preferred nutrient by sorting and concentrating them. The device consists of the Y-shaped microchannel that has been widely used in chemotaxis studies to attract cells toward a high concentration and a concentrator array integrated with arrowhead-shaped ratchet structures beside the main microchannel to trap and accumulate them. Since the number of accumulated cells in the concentrator array continuously increases with time, the device makes it possible to increase the sensitivity of detecting chemotactic responses of the cells about 10 times greater than Y-shaped channel devices in 60 min. In addition, the device can characterize the relative chemotactic sensitivity of chemoreceptors to chemoeffectors by comparing the number of cells in the concentrator array at different distances from the channel junction. Since the device allows the analysis of both the chemotactic responses and the sensitivity of chemoreceptors with high resolution, we believe that not only can the device be broadly used for various microbial chemotaxis assays but it also can further the advancement of microbiology and even synthetic biology.close9

    Adaptive Noise Reduction Algorithm to Improve R Peak Detection in ECG Measured by Capacitive ECG Sensors

    Get PDF
    Electrocardiograms (ECGs) can be conveniently obtained using capacitive ECG sensors. However, motion noise in measured ECGs can degrade R peak detection. To reduce noise, properties of reference signal and ECG measured by the sensors are analyzed and a new method of active noise cancellation (ANC) is proposed in this study. In the proposed algorithm, the original ECG signal at QRS interval is regarded as impulsive noise because the adaptive filter updates its weight as if impulsive noise is added. As the proposed algorithm does not affect impulsive noise, the original signal is not reduced during ANC. Therefore, the proposed algorithm can conserve the power of the original signal within the QRS interval and reduce only the power of noise at other intervals. The proposed algorithm was verified through comparisons with recent research using data from both indoor and outdoor experiments. The proposed algorithm will benefit a noise reduction of noisy biomedical signal measured from sensors.11Ysciescopu

    Waveguide Holography: Towards True 3D Holographic Glasses

    Full text link
    We present a novel near-eye display concept which consists of a waveguide combiner, a spatial light modulator, and a laser light source. The proposed system can display true 3D holographic images through see-through pupil-replicating waveguide combiner as well as providing a large eye-box. By modeling the coherent light interaction inside of the waveguide combiner, we demonstrate that the output wavefront from the waveguide can be controlled by modulating the wavefront of input light using a spatial light modulator. This new possibility allows combining a holographic display, which is considered as the ultimate 3D display technology, with the state-of-the-art pupil replicating waveguides, enabling the path towards true 3D holographic augmented reality glasses
    corecore