516 research outputs found

    Use of Fluka to Create Dose Calculations

    Get PDF
    Monte Carlo codes provide an effective means of modeling three dimensional radiation transport; however, their use is both time- and resource-intensive. The creation of a lookup table or parameterization from Monte Carlo simulation allows users to perform calculations with Monte Carlo results without replicating lengthy calculations. FLUKA Monte Carlo transport code was used to develop lookup tables and parameterizations for data resulting from the penetration of layers of aluminum, polyethylene, and water with areal densities ranging from 0 to 100 g/cm^2. Heavy charged ion radiation including ions from Z=1 to Z=26 and from 0.1 to 10 GeV/nucleon were simulated. Dose, dose equivalent, and fluence as a function of particle identity, energy, and scattering angle were examined at various depths. Calculations were compared against well-known results and against the results of other deterministic and Monte Carlo codes. Results will be presented

    Tunable far-infrared laser spectroscopy of hydrogen bonds: The K_a = O(u)→1(g) rotation-tunneling spectrum of the HCI dimer

    Get PDF
    The ground state K_a =0(u)→1(g) b‐type subband of the rotation–tunneling spectrum of the symmetric ^(35)Cl–^(35)Cl,^(37)Cl–^(37)Cl, and the mixed ^(35)Cl–^(37)Cl hydrogen chloride dimers have been recorded near 26.3 cm^(−1) with sub‐Doppler resolution in a continuous two‐dimensional supersonic jet with a tunable far‐infrared laser spectrometer. Quadrupole hyperfine structure from the chlorine nuclei has been resolved. From the fitted rotational constants a (H^(35)Cl)_2 center‐of‐mass separation of 3.81 Å is derived for the K_a =1(g) levels, while the nuclear quadrupole coupling constants yield a vibrationally averaged angular structure for both tunneling states of approximately 20–25 deg for the hydrogen bonded proton and at least 70–75 deg for the external proton. This nearly orthogonal structure agrees well with that predicted by ab initio theoretical calculations, but the observed splittings and intensity alterations of the lines indicate that the chlorine nuclei are made equivalent by a large amplitude tunneling motion of the HCl monomers. A similar geared internal rotation tunneling motion has been found for the HF dimer, but here the effect is much greater. The ground state tunneling splittings are estimated to lie between 15–18 cm^(−1), and the selection rules observed indicate that the trans tunneling path dominates the large amplitude motion, as expected, provided the dimer remains planar. From the observed hyperfine constants, we judge the dimer and its associated tunneling motion to be planar to within 10°

    A perfusion-capable microfluidic bioreactor for assessing microbial heterologous protein production

    Get PDF
    We present an integrated microfluidic bioreactor for fully continuous perfusion cultivation of suspended microbial cell cultures. This system allowed continuous and stable heterologous protein expression by sustaining the cultivation of Pichia pastoris over 11 days. This technical capability also allowed testing the impact of perfusion conditions on protein expression. This advance should enable small-scale models for process optimization in continuous biomanufacturing.United States. Defense Advanced Research Projects Agency (N66001-13-C-4025)National Cancer Institute (U.S.) (P30-CA14051)United States. National Institutes of Health (2T32GM008334-26

    Measurement of the perpendicular rotation-tunneling spectrum of the water dimer by tunable far infrared laser spectroscopy in a planar supersonic jet

    Get PDF
    Fifty-six transitions from the K=1 lower-->K=2 lower tunneling–rotation band of water dimer have been measured and assigned at 22 cm^–1 by direct absorption spectroscopy in a cw planar supersonic jet expansion using a tunable far infrared laser spectrometer. Two different models were used to fit the data and several spectroscopic constants were determined for the upper and lower states. This work supports the local IAM model recently proposed by Coudert and Hougen for the hydrogen bond tunneling dynamics of the water dimer. This model includes four different tunneling motions, all of which contribute to the observed tunneling splittings. This is the most complicated hydrogen bonded system considered to be well understood at this time, at least in the lowest few K states

    Tunable far infrared laser spectroscopy of van der Waals bonds: Extended measurements on the lowest Sigma bend of ArHCl

    Get PDF
    A tunable far infrared laser system has been used to measure the vibration–rotation spectrum of the lowest Sigma bending state of ArHCl near 24 cm^−1 in a cw planar jet operating with a terminal jet temperature near 3 K. Over 60 transitions have been observed for both 35Cl and 37Cl isotopes with resolution of the quadrupole hyperfine structure. An improved set of molecular parameters was determined, including B, D, H, and eqQ for both upper and lower states. Very narrow linewidths (approximately 300 kHz) resulting in high resolution and sensitivity make this technique a powerful new method for the detailed investigation of intermolecular forces

    Tunable far infrared laser spectroscopy of van der Waals bonds: Vibration–rotation–tunneling spectra of Ar–H2O

    Get PDF
    The first high resolution spectra of a rare gas–H2O cluster have been observed using a tunable far infrared laser to probe the vibration–rotation–tunneling levels of Ar–H2O formed in a continuous planar supersonic jet. The high sensitivity of this spectrometer facilitated extensive measurements of two perpendicular subbands which are assigned to transitions from the ground state to the upper component of a hydrogen exchange tunneling doublet (c-type) at 21 cm^−1, and to vb1 =1+ (b-type) at 25 cm^−1, the lower tunneling component of a bending vibration which is perpendicular to the tunneling coordinate. The tunneling splitting is shown to be in the range 2.5–7 cm^−1 and the lower tunneling component of the excited bending vibration lies between 39 and 43 cm^−1 above the ground state of the complex. The experimentally determined center-of-mass separation (Rc.m. =3.75 Å) and harmonic stretching force constant (ks =0.0134 mdyn/Å) are compared to those of related first and second row hydrides. The large amplitude motions occurring within this complex make it difficult to establish its structure

    Comparison of numerical methods for simulating strongly non-linear and heterogeneous reactive transport problems – the MoMaS benchmark case

    Full text link
    International audienceAlthough multicomponent reactive transport modeling is gaining wider application in various geoscience fields, it continues to present significant mathematical and computational challenges. There is a need to solve and compare the solutions to complex benchmark problems, using a variety of codes, because such intercomparisons can reveal promising numerical solution approaches and increase confidence in the application of reactive transport codes. In this contribution, the results and performance of five current reactive transport codes are compared for the 1D and 2D sub-problems of the so-called "Easy Test Case" of the MoMaS benchmark (Carrayrou et al., this issue). As a group, the codes include iterative and non-iterative operator splitting, and global implicit solution approaches. The 1D Easy Advective and 1D Easy Diffusive scenarios were solved using all codes and, in general, there was good agreement, with solution discrepancies limited to regions with rapid concentration changes. Computational demands were typically consistent with what was expected for the various solution approaches. The most important outcome of the benchmark exercise is that all codes are able to generate comparable results for problems of significant complexity and computational difficulty
    • 

    corecore