1 research outputs found
A Theory Explains Deep Learning
This is our journal for developing Deduction Theory and studying Deep Learning and Artificial intelligence. Deduction Theory is a Theory of Deducing World’s Relativity by Information Coupling and Asymmetry. We focus on information processing, see intelligence as an information structure that relatively close object-oriented, probability-oriented, unsupervised learning, relativity information processing and massive automated information processing. We see deep learning and machine learning as an attempt to make all types of information processing relatively close to probability information processing. We will discuss about how to understand Deep Learning and Artificial intelligence and why Deep Learning is shown better performance than the other methods by metaphysical logic