230 research outputs found
Services rules in regional trade agreements: How diverse and how creative as compared to the GATS multilateral rules?
The study tries first to assess the extent of similarities and divergences among services rules in regional trade agreements as compared to the GATS. To do so, it uses a typology identifying variations in 48 key provisions structured under seven themes commonly found in RTAs and using the GATS as a benchmark. The analysis identifies two main families of agreements (GATS-inspired and NAFTA-inspired) and a residual category. The paper briefly explores the historical development that led to these families as well as their geographical spread both on an agreement by agreement basis and a country by country basis. The paper then analyses by theme the variations found in the RTAs among services rules including their novelty as compared to the GATS. Given the lack of available information on the implementation of the agreements the paper tries to assess whenever possible the magnitude of the discrepancies and their practical impacts. While subject to some qualifications, the results of the study are relatively straight forward: there is no spaghetti bowl in services rules, but just two families and one residual category. The details reveal that the degree of divergence between those two families does not overall seem insurmountable. This assessment concords with other studies (e.g. Marchetti, Roy) that have equated them in terms of national treatment and market access and have compared directly commitments undertaken under the three families of agreements. One may even note a certain tendency to a convergence towards the GATS model (e.g. the addition of market access clause in the second generation of NAFTA-like agreements or the use of GATS-type architecture by EU for agreements else than pre-adhesion ones)
Effects of positively charged arginine residues on membrane pore forming activity of Rev–NIS peptide in bacterial cells
AbstractHere, we investigated antibacterial effects of Rev–NIS and suggested the role of positively charged amino acids on membrane pore forming activity of the peptide in bacterial cells, by synthesizing two analogs, Anal R and Anal S. Based on the amphipathic property of Rev–NIS, Anal R and Anal S were designed by substituting E1 and L3 to R and L3 to S, respectively. The circular dichroism (CD) spectroscopy showed that Anal R and Anal S have the same conformation of Rev–NIS, with a significant fraction of helical structure. In succession, the antibacterial susceptibility testing showed that Rev–NIS and its analogs possessed significant activities (Anal R>Rev–NIS>Anal S), without hemolytic effects, against bacterial pathogens including antibiotics-resistant strains. Moreover, the membrane studies, 3,3′-dipropylthiadicarbocyanine iodide (diSC35) staining and FITC-dextran (FD) leakage assay demonstrated that the analogs as well as Rev–NIS acted on the bacterial membranes and potently made pores, with the hydrodynamic radius between 1.4nm and 2.3nm. Especially, Anal R made larger pores than other peptides, with the radius between 2.3nm and 3.3nm. These results also corresponded to the result of antibacterial susceptibility testing. In summary, this study indicates that the two arginine residues are more influential than the hydrophobicity or the helicity, regarding the molecular activity of the peptide, and finally suggests that Anal R peptide may be applied to novel antibacterial agents
Sex Differences in the Inflammatory Response to Stroke
Ischemic stroke is a leading cause of morbidity and mortality and disproportionally affects women, in part due to their higher longevity. Older women have poorer outcomes after stroke with high rates of cognitive deficits, depression, and reduced quality of life. Post-stroke inflammatory responses are also sexually dimorphic and drive differences in infarct size and recovery. Factors that influence sex-specific immune responses can be both intrinsic and extrinsic. Differences in gonadal hormone exposure, sex chromosome compliment, and environmental/social factors can drive changes in transcriptional and metabolic profiles. In addition, how these variables interact, changes across the lifespan. After the onset of ischemic injury, necrosis and apoptosis occur, which activate microglia and other glial cells within the central nervous system, promoting the release of cytokines and chemokines and neuroinflammation. Cells involved in innate and adaptive immune responses also have dual functions after stroke as they can enhance inflammation acutely, but also contribute to suppression of the inflammatory cascade and later repair. In this review, we provide an overview of the current literature on sex-specific inflammatory responses to ischemic stroke. Understanding these differences is critical to identifying therapeutic options for both men and women
The Contribution of Age-Related Changes in the Gut-Brain Axis to Neurological Disorders
Trillions of microbes live symbiotically in the host, specifically in mucosal tissues such as the gut. Recent advances in metagenomics and metabolomics have revealed that the gut microbiota plays a critical role in the regulation of host immunity and metabolism, communicating through bidirectional interactions in the microbiota-gut-brain axis (MGBA). The gut microbiota regulates both gut and systemic immunity and contributes to the neurodevelopment and behaviors of the host. With aging, the composition of the microbiota changes, and emerging studies have linked these shifts in microbial populations to age-related neurological diseases (NDs). Preclinical studies have demonstrated that gut microbiota-targeted therapies can improve behavioral outcomes in the host by modulating microbial, metabolomic, and immunological profiles. In this review, we discuss the pathways of brain-to-gut or gut-to-brain signaling and summarize the role of gut microbiota and microbial metabolites across the lifespan and in disease. We highlight recent studies investigating 1) microbial changes with aging; 2) how aging of the maternal microbiome can affect offspring health; and 3) the contribution of the microbiome to both chronic age-related diseases (e.g., Parkinson\u27s disease, Alzheimer\u27s disease and cerebral amyloidosis), and acute brain injury, including ischemic stroke and traumatic brain injury
The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica
AbstractDioscin is a kind of steroidal saponin isolated from the root bark of wild yam Dioscorea nipponica. We investigated the antifungal effect of dioscin against different fungal strains and its antifungal mechanism(s) in Candida albicans cells. Using the propidium iodide assay and calcein-leakage measurement, we confirmed that dioscin caused fungal membrane damage. Furthermore, we evaluated the ability of dioscin to disrupt the plasma membrane potential, using 3,3′-dipropylthiadicarbocyanine iodide [DiSC3(5)] and bis-(1,3-dibarbituric acid)-trimethine oxanol [DiBAC4(3)]. Cells stained with the dyes had a significant increase in fluorescent intensity after exposure to dioscin, indicating that dioscin has an effect on the membrane potential. To visualize the effect of dioscin on the cell membrane, we synthesized rhodamine-labeled giant unilamellar vesicles (GUVs) mimicking the outer leaflet of the plasma membrane of C. albicans. As seen in the result, the membrane disruptive action of dioscin caused morphological change and rhodamine leakage of the GUVs. In three-dimensional contour-plot analysis using flow cytometry, we observed a decrease in cell size, which is in agreement with our result from the GUV assay. These results suggest that dioscin exerts a considerable antifungal activity by disrupting the structure in membrane after invading into the fungal membrane, resulting in fungal cell death
Trehalose Glycopolymer Enhances Both Solution Stability and Pharmacokinetics of a Therapeutic Protein
Biocompatible polymers such as poly(ethylene glycol) (PEG) have been successfully conjugated to therapeutic proteins to enhance their pharmacokinetics. However, many of these polymers, including PEG, only improve the in vivo lifetimes and do not protect proteins against inactivation during storage and transportation. Herein, we report a polymer with trehalose side chains (PolyProtek) that is capable of improving both the external stability and the in vivo plasma half-life of a therapeutic protein. Insulin was employed as a model biologic, and high performance liquid chromatography and dynamic light scattering confirmed that addition of trehalose glycopolymer as an excipient or covalent conjugation prevented thermal or agitation-induced aggregation of insulin. The insulin-trehalose glycopolymer conjugate also showed significantly prolonged plasma circulation time in mice, similar to the analogous insulin-PEG conjugate. The insulin-trehalose glycopolymer conjugate was active as tested by insulin tolerance tests in mice and retained bioactivity even after exposure to high temperatures. The trehalose glycopolymer was shown to be non-toxic to mice up to at least 1.6 mg/kg dosage. These results together suggest that the trehalose glycopolymer should be further explored as an alternative to PEG for long circulating protein therapeutics
MicroRNA Profiles in Intestinal Epithelial Cells in a Mouse Model of Sepsis
Sepsis is a systemic inflammatory disorder that leads to the dysfunction of multiple organs. In the intestine, the deregulation of the epithelial barrier contributes to the development of sepsis by triggering continuous exposure to harmful factors. However, sepsis-induced epigenetic changes in gene-regulation networks within intestinal epithelial cells (IECs) remain unexplored. In this study, we analyzed the expression profile of microRNAs (miRNAs) in IECs isolated from a mouse model of sepsis generated via cecal slurry injection. Among 239 miRNAs, 14 miRNAs were upregulated, and 9 miRNAs were downregulated in the IECs by sepsis. Upregulated miRNAs in IECs from septic mice, particularly miR-149-5p, miR-466q, miR-495, and miR-511-3p, were seen to exhibit complex and global effects on gene regulation networks. Interestingly, miR-511-3p has emerged as a diagnostic marker in this sepsis model due to its increase in blood in addition to IECs. As expected, mRNAs in the IECs were remarkably altered by sepsis; specifically, 2248 mRNAs were decreased, while 612 mRNAs were increased. This quantitative bias may be possibly derived, at least partly, from the direct effects of the sepsis-increased miRNAs on the comprehensive expression of mRNAs. Thus, current in silico data indicate that there are dynamic regulatory responses of miRNAs to sepsis in IECs. In addition, the miRNAs that were increased with sepsis had enriched downstream pathways including Wnt signaling, which is associated with wound healing, and FGF/FGFR signaling, which has been linked to chronic inflammation and fibrosis. These modifications in miRNA networks in IECs may lead to both pro- and anti-inflammatory effects in sepsis. The four miRNAs discovered above were shown to putatively targe
Sepsis Exacerbates Alzheimer’s Disease Pathophysiology, Modulates the Gut Microbiome, Increases Neuroinflammation and Amyloid Burden
While our understanding of the molecular biology of Alzheimer\u27s disease (AD) has grown, the etiology of the disease, especially the involvement of peripheral infection, remains a challenge. In this study, we hypothesize that peripheral infection represents a risk factor for AD pathology. To test our hypothesis, APP/PS1 mice underwent cecal ligation and puncture (CLP) surgery to develop a polymicrobial infection or non-CLP surgery. Mice were euthanized at 3, 30, and 120 days after surgery to evaluate the inflammatory mediators, glial cell markers, amyloid burden, gut microbiome, gut morphology, and short-chain fatty acids (SCFAs) levels. The novel object recognition (NOR) task was performed 30 and 120 days after the surgery, and sepsis accelerated the cognitive decline in APP/PS1 mice at both time points. At 120 days, the insoluble Aβ increased in the sepsis group, and sepsis modulated the cytokines/chemokines, decreasing the cytokines associated with brain homeostasis IL-10 and IL-13 and increasing the eotaxin known to influence cognitive function. At 120 days, we found an increased density of IBA-1-positive microglia in the vicinity of Aβ dense-core plaques, compared with the control group confirming the predictable clustering of reactive glia around dense-core plaques within 15 μm near Aβ deposits in the brain. In the gut, sepsis negatively modulated the α- and β-diversity indices evaluated by 16S rRNA sequencing, decreased the levels of SCFAs, and significantly affected ileum and colon morphology in CLP mice. Our data suggest that sepsis-induced peripheral infection accelerates cognitive decline and AD pathology in the AD mouse model
Estradiol Mediates Colonic Epithelial Protection in Aged Mice After Stroke and Is Associated With Shifts in the Gut Microbiome
The gut is a major source of bacteria and antigens that contribute to neuroinflammation after brain injury. Colonic epithelial cells (ECs) are responsible for secreting major cellular components of the innate defense system, including antimicrobial proteins (AMP) and mucins. These cells serve as a critical regulator of gut barrier function and maintain host-microbe homeostasis. In this study, we determined post-stroke host defense responses at the colonic epithelial surface in mice. We then tested if the enhancement of these epithelial protective mechanisms is beneficial in young and aged mice after stroke. AMPs were significantly increased in the colonic ECs of young males, but not in young females after experimental stroke. In contrast, mucin-related genes were enhanced in young females and contributed to mucus formation that maintains the distance between the host and gut bacteria. Bacterial community profiling was done using universal amplification of 16S rRNA gene sequences. The sex-specific colonic epithelial defense responses after stroke in young females were reversed with ovariectomy and led to a shift from a predominately mucin response to the enhanced AMP expression seen in males after stroke. Estradiol (E2) replacement prior to stroke in aged females increased mucin gene expression in the colonic ECs. Interestingly, we found that E2 treatment reduced stroke-associated neuronal hyperactivity in the insular cortex, a brain region that interacts with visceral organs such as the gut, in parallel to an increase in the composition of Lactobacillus and Bifidobacterium in the gut microbiota. This is the first study demonstrating sex differences in host defense mechanisms in the gut after brain injury
- …