13,410 research outputs found

    Excited Heavy Baryon Masses from the 1/N_c Expansion of HQET

    Get PDF
    The mass spectra of the L=1 orbitally excited heavy baryons with light quarks in both the spin-flavor symmetric and the mixed representations are studied by the 1/Nc1/N_c expansion method in the framework of the heavy quark effective theory. The mixing effect between the baryons in the two representations is also considered. The general pattern of the spectrum is predicted which will be verified by the experiments in the near future.Comment: 9 pages, latex, no figure, uses sprocl.sty (included). Talk by Chun Liu at the workshop on Non-Perturbative Methods and Lattice QCD (Guangzhou, May 15-21, 2000

    Patterns of Striped order in the Classical Lattice Coulomb Gas

    Full text link
    We obtain via Monte Carlo simulations the low temperature charge configurations in the lattice Coulomb gas on square lattices for charge filling ratio ff in the range 1/3<f<1/21/3 < f < 1/2 . We find a simple regularity in the low temperature charge configurations which consist of a suitable periodic combination of a few basic striped patterns characterized by the existence of partially filled diagonal channels. In general there exist two separate transitions where the lower temperature transition (TpT_p) corresponds to the freezing of charges within the partially filled channels. TpT_p is found to be sensitively dependent on ff through the charge number density ν=p1/q1\nu = p_{1}/q_{1} within the channels.Comment: 4 pages, 8 figure

    Exploiting Trust Degree for Multiple-Antenna User Cooperation

    Full text link
    For a user cooperation system with multiple antennas, we consider a trust degree based cooperation techniques to explore the influence of the trustworthiness between users on the communication systems. For the system with two communication pairs, when one communication pair achieves its quality of service (QoS) requirement, they can help the transmission of the other communication pair according to the trust degree, which quantifies the trustworthiness between users in the cooperation. For given trust degree, we investigate the user cooperation strategies, which include the power allocation and precoder design for various antenna configurations. For SISO and MISO cases, we provide the optimal power allocation and beamformer design that maximize the expected achievable rates while guaranteeing the QoS requirement. For a SIMO case, we resort to semidefinite relaxation (SDR) technique and block coordinate update (BCU) method to solve the corresponding problem, and guarantee the rank-one solutions at each step. For a MIMO case, as MIMO is the generalization of MISO and SIMO, the similarities among their problem structures inspire us to combine the methods from MISO and SIMO together to efficiently tackle MIMO case. Simulation results show that the trust degree information has a great effect on the performance of the user cooperation in terms of the expected achievable rate, and the proposed user cooperation strategies achieve high achievable rates for given trust degree.Comment: 15 pages,9 figures, to appear in IEEE Transactions on Wireless communication

    Inclusive Production of Four Charm Hadrons in e^+ e^- Annihilation at B Factories

    Full text link
    Measurements by the Belle Collaboration of the exclusive production of two charmonia in e^+ e^- annihilation differ substantially from theoretical predictions. Till now, no conclusive explanation for this remarkable discrepancy has been provided. Even the origin of the discrepancy is not identified, yet. We suggest that the measurement of four-charm events in Belle data must provide a strong constraint in identifying the origin of this large discrepancy. Our prediction of the cross section for e^+e^- -> c c-bar c c-bar, in lowest order in strong coupling constant, at sqrt{s}=10.6 GeV is about 0.1 pb. If measured four-charm cross section is compatible with the prediction based on perturbative QCD, it is very likely that factorization of hadronization process from perturbative part may be significantly violated or there exists a new production mechanism. If the cross section for the four-charm event is also larger than the prediction like that for the exclusive J/psi+eta_c production, perturbative QCD expansion itself will be proved to be unreliable and loses predictive power.Comment: 4 pages, 3 figures, version published in Phys. Rev. D as a Rapid Communicatio

    Spin relaxation in mesoscopic superconducting Al wires

    Full text link
    We studied the diffusion and the relaxation of the polarized quasiparticle spins in superconductors. To that end, quasiparticles of polarized spins were injected through an interface of a mesoscopic superconducting Al wire in proximity contact with an overlaid ferromagnetic Co wire in the single-domain state. The superconductivity was observed to be suppressed near the spin-injecting interface, as evidenced by the occurrence of a finite voltage for a bias current below the onset of the superconducting transition. The spin diffusion length, estimated from finite voltages over a certain length of Al wire near the interface, was almost temperature independent in the temperature range sufficiently below the superconducting transition but grew as the transition temperature was approached. This temperature dependence suggests that the relaxation of the spin polarization in the superconducting state is governed by the condensation of quasiparticles to the paired state. The spin relaxation in the superconducting state turned out to be more effective than in the normal state.Comment: 9 pages, 8 figure

    Breakdown of the interlayer coherence in twisted bilayer graphene

    Full text link
    Coherent motion of the electrons in the Bloch states is one of the fundamental concepts of the charge conduction in solid state physics. In layered materials, however, such a condition often breaks down for the interlayer conduction, when the interlayer coupling is significantly reduced by e.g. large interlayer separation. We report that complete suppression of coherent conduction is realized even in an atomic length scale of layer separation in twisted bilayer graphene. The interlayer resistivity of twisted bilayer graphene is much higher than the c-axis resistivity of Bernal-stacked graphite, and exhibits strong dependence on temperature as well as on external electric fields. These results suggest that the graphene layers are significantly decoupled by rotation and incoherent conduction is a main transport channel between the layers of twisted bilayer graphene.Comment: 5 pages, 3 figure
    corecore