2,811 research outputs found
Smart Automatic Power Factor Correction Device
This document will discuss on research and theory of the chosen topic for Final Year Project, which is Smart Automatic Power Factor Correction Device (PFCD). The objective of this project is to conduct study on the theory of power factor correction, application in industry and residential, simulate the circuit of power factor with different load, experimentally test the power factor concept and further improve it to a smart automatic power factor correction device
Nucleon Resonances with Hidden Charm in Coupled-Channel Models
The model dependence of the predictions of nucleon resonances with hidden
charm is investigated. We consider several coupled-channel models which are
derived from relativistic quantum field theory by using (1) a unitary
transformation method, and (2) the three-dimensional reductions of
Bethe-Salpeter Equation. With the same vector meson exchange mechanism, we find
that all models give very narrow molecular-like nucleon resonances with hidden
charm in the mass range of 4.3 GeV 4.5 GeV, in consistent with the
previous predictions.Comment: 17 pages, 3 figure
Finite-volume Hamiltonian method for coupled channel interactions in lattice QCD
Within a multi-channel formulation of scattering, we investigate the
use of the finite-volume Hamiltonian approach to resolve scattering observables
from lattice QCD spectra. The asymptotic matching of the well-known L\"uscher
formalism encodes a unique finite-volume spectrum. Nevertheless, in many
practical situations, such as coupled-channel systems, it is advantageous to
interpolate isolated lattice spectra in order to extract physical scattering
parameters. Here we study the use of the Hamiltonian framework as a
parameterisation that can be fit directly to lattice spectra. We find that with
a modest amount of lattice data, the scattering parameters can be reproduced
rather well, with only a minor degree of model dependence.Comment: 25 pages, 16 figure
- …