5,052 research outputs found

    Stock Market Liquidity And Dividend Policy In Korean Corporations

    Get PDF
    The liquidity hypothesis predicts a negative relationship between stock liquidity and dividend payout propensity, i.e., a firm will decide to pay dividends to compensate for the liquidity demand of investors. This study comprehensively examines whether the liquidity hypothesis applies to the sample of Korean firms listed in the KOSPI and KOSDAQ markets. The main results of this paper are as follows. First, the dividend policy in Korean firms does not support the liquidity hypothesis, contradictory to the existing empirical studies. Next, the explanatory power of the liquidity hypothesis is even weaker for the KOSDAQ market, inconsistent with international evidence. Finally, even when we focus on the firm-year observations with non-negligible dividend payments, the liquidity hypothesis does not explain the dividend policy of Korean firms either. Our findings significantly contribute to the literature by robustly confirming the very limited role of the liquidity hypothesis for Korean financial markets. 

    Determination of Refrigerant Path Number for Fin-tube Condenser Considering Heat Transfer Performance and Pumping Power

    Get PDF
    Fin-tube heat exchangers are widely used in air-conditioners and heat pumps, which are constructed with a lot of tubes. Refrigerant circuit of heat exchanger with numerous pipe can be constructed by many methods. Refrigerant circuit design is usually determined designer’s experience and case by case test without guides. The number of path affects largely on heat exchanger performance. In this paper, design methodology for optimum number of path is suggested by relating convective thermal resistance and pumping power. Suggested methodology is described through an example and verified by various refrigerant circuit simulation results

    Three-way Translocation of MLL/MLLT3, t(1;9;11)(p34.2;p22;q23), in a Pediatric Case of Acute Myeloid Leukemia

    Get PDF
    The chromosome band 11q23 is a common target region of chromosomal translocation in different types of leukemia, including infantile leukemia and therapy-related leukemia. The target gene at 11q23, MLL, is disrupted by the translocation and becomes fused to various translocation partners. We report a case of AML with a rare 3-way translocation involving chromosomes 1, 9, and 11: t(1;9;11)(p34.2;p22;q23). A 3-yr-old Korean girl presented with a 5-day history of fever. A diagnosis of AML was made on the basis of the morphological evaluation and immunophenotyping of bone marrow specimens. Flow cytometric immunophenotyping showed blasts positive for myeloid lineage markers and aberrant CD19 expression. Karyotypic analysis showed 46,XX,t(1;9;11)(p34.2;p22;q23) in 19 of the 20 cells analyzed. This abnormality was involved in MLL/MLLT3 rearrangement, which was confirmed by qualitative multiplex reverse transcription-PCR and interphase FISH. She achieved morphological and cytogenetic remission after 1 month of chemotherapy and remained event-free for 6 months. Four cases of t(1;9;11)(v;p22;q23) have been reported previously in a series that included cases with other 11q23 abnormalities, making it difficult to determine the distinctive clinical features associated with this abnormality. To our knowledge, this is the first description of t(1;9;11) with clinical and laboratory data, including the data for the involved genes, MLL/MLLT3

    Retrieval of total precipitable water from Himawari-8 AHI data: A comparison of random forest, extreme gradient boosting, and deep neural network

    Get PDF
    Total precipitable water (TPW), a column of water vapor content in the atmosphere, provides information on the spatial distribution of moisture. The high-resolution TPW, together with atmospheric stability indices such as convective available potential energy (CAPE), is an effective indicator of severe weather phenomena in the pre-convective atmospheric condition. With the advent of high performing imaging instrument onboard geostationary satellites such as Advanced Himawari Imager (AHI) onboard Himawari-8 of Japan and Advanced Meteorological Imager (AMI) onboard GeoKompsat-2A of Korea, it is expected that unprecedented spatiotemporal resolution data (e.g., AMI plans to provide 2 km resolution data at every 2 min over the northeast part of East Asia) will be provided. To derive TPW from such high-resolution data in a timely fashion, an efficient algorithm is highly required. Here, machine learning approaches-random forest (RF), extreme gradient boosting (XGB), and deep neural network (DNN)-are assessed for the TPW retrieved from AHI over the clear sky in Northeast Asia area. For the training dataset, the nine infrared brightness temperatures (BT) of AHI (BT8 to 16 centered at 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 11.2, 12.4, and 13.3 ??m, respectively), six dual channel differences and observation conditions such as time, latitude, longitude, and satellite zenith angle for two years (September 2016 to August 2018) are used. The corresponding TPW is prepared by integrating the water vapor profiles from InterimEuropean Centre for Medium-Range Weather Forecasts Re-Analysis data (ERA-Interim). The algorithm performances are assessed using the ERA-Interim and radiosonde observations (RAOB) as the reference data. The results show that the DNN model performs better than RF and XGB with a correlation coefficient of 0.96, a mean bias of 0.90 mm, and a root mean square error (RMSE) of 4.65 mm when compared to the ERA-Interim. Similarly, DNN results in a correlation coefficient of 0.95, a mean bias of 1.25 mm, and an RMSE of 5.03 mm when compared to RAOB. Contributing variables to retrieve the TPW in each model and the spatial and temporal analysis of the retrieved TPW are carefully examined and discussed. ?? 2019 by the authors
    corecore