1,437 research outputs found

    Zoology of domain walls in quasi-2D correlated charge density wave of 1T-TaS2

    Full text link
    Domain walls in correlated charge density wave compounds such as 1T-TaS2 can have distinct localized states which govern physical properties and functionalities of emerging quantum phases. However, detailed atomic and electronic structures of domain walls have largely been elusive. We identify using scanning tunneling microscope and density functional theory calculations the atomic and electronic structures for a plethora of discommensuration domain walls in 1T-TaS2 quenched metastably with nanoscale domain wall networks. The domain walls exhibit various in-gap states within the Mott gap but metallic states appear in only particular types of domain walls. A systematic understanding of the domain-wall electronic property requests not only the electron counting but also including various intertwined interactions such as structural relaxation, electron correlation, and charge transfer. This work guides the domain wall engineering of the functionality in correlated van der Waals materials.Comment: 7 pages, 4 figure

    Quantifying the Influence of Climate Variation on Typhoon Rainfalls and Streamflows in South Korea

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Toward a Better Understanding of Loss Functions for Collaborative Filtering

    Full text link
    Collaborative filtering (CF) is a pivotal technique in modern recommender systems. The learning process of CF models typically consists of three components: interaction encoder, loss function, and negative sampling. Although many existing studies have proposed various CF models to design sophisticated interaction encoders, recent work shows that simply reformulating the loss functions can achieve significant performance gains. This paper delves into analyzing the relationship among existing loss functions. Our mathematical analysis reveals that the previous loss functions can be interpreted as alignment and uniformity functions: (i) the alignment matches user and item representations, and (ii) the uniformity disperses user and item distributions. Inspired by this analysis, we propose a novel loss function that improves the design of alignment and uniformity considering the unique patterns of datasets called Margin-aware Alignment and Weighted Uniformity (MAWU). The key novelty of MAWU is two-fold: (i) margin-aware alignment (MA) mitigates user/item-specific popularity biases, and (ii) weighted uniformity (WU) adjusts the significance between user and item uniformities to reflect the inherent characteristics of datasets. Extensive experimental results show that MF and LightGCN equipped with MAWU are comparable or superior to state-of-the-art CF models with various loss functions on three public datasets.Comment: Accepted by CIKM 202
    corecore