3,825 research outputs found

    Supersymmetric Higgs Boson Decays in the MSSM with Explicit CP Violation

    Get PDF
    Decays into neutralinos and charginos are among the most accessible supersymmetric decay modes of Higgs particles in most supersymmetric extensions of the Standard Model. In the presence of explicitly CP--violating phases in the soft breaking sector of the theory, the couplings of Higgs bosons to charginos and neutralinos are in general complex. Based on a specific benchmark scenario of CP violation, we analyze the phenomenological impact of explicit CP violation in the Minimal Supersymmetric Standard Model on these Higgs boson decays. The presence of CP--violating phases could be confirmed either directly through the measurement of a CP--odd polarization asymmetry of the produced charginos and neutralinos, or through the dependence of CP--even quantities (branching ratios and masses) on these phases.Comment: 14 pages, latex, 4 eps figure

    Disposable Integrated Microfluidic Biochip for Blood Typing by Plastic Microinjection Moulding

    Get PDF
    Blood typing is the most important test for both transfusion recipients and blood donors. In this paper, a low cost disposable blood typing integrated microfluidic biochip has been designed, fabricated and characterized. In the biochip, flow splitting microchannels, chaotic micromixers, reaction microchambers and detection microfilters are fully integrated. The loaded sample blood can be divided by 2 or 4 equal volumes through the flow splitting microchannel so that one can perform 2 or 4 blood agglutination tests in parallel. For the purpose of obtaining efficient reaction of agglutinogens on red blood cells (RBCs) and agglutinins in serum, we incorporated a serpentine laminating micromixer into the biochip, which combines two chaotic mixing mechanisms of splitting/recombination and chaotic advection. Relatively large area reaction microchambers were also introduced for the sake of keeping the mixture of the sample blood and serum during the reaction time before filtering. The gradually decreasing multi-step detection microfilters were designed in order to effectively filter the reacted agglutinated RBCs, which show the corresponding blood group. To achieve the cost-effectiveness of the microfluidic biochip for disposability, the biochip was realized by the microinjection moulding of COC (cyclic olefin copolymer) and thermal bonding of two injection moulded COC substrates in mass production with a total fabrication time of less than 20 min. Mould inserts of the biochip for the microinjection moulding were fabricated by SU-8 photolithography and the subsequent nickel electroplating process. Human blood groups of A, B and AB have been successfully determined with the naked eye, with 3 mu l of the whole sample bloods, by means of the fabricated biochip within 3 min.X11100104sciescopu

    Vortex solutions of a Maxwell-Chern-Simons field coupled to four-fermion theory

    Full text link
    We find the static vortex solutions of the model of Maxwell-Chern-Simons gauge field coupled to a (2+1)-dimensional four-fermion theory. Especially, we introduce two matter currents coupled to the gauge field minimally: the electromagnetic current and a topological current associated with the electromagnetic current. Unlike other Chern-Simons solitons the N-soliton solution of this theory has binding energy and the stability of the solutions is maintained by the charge conservation laws.Comment: 7 pages, harvmac, To be published in Phys. Rev. D5

    Density functional calculations of the electronic structure and magnetic properties of the hydrocarbon K3picene superconductor near the metal-insulator transition

    Get PDF
    We have investigated the electronic structures and magnetic properties of of K3picene, which is a first hydrocarbon superconductor with high transition temperature T_c=18K. We have shown that the metal-insulator transition (MIT) is driven in K3picene by 5% volume enhancement with a formation of local magnetic moment. Active bands for superconductivity near the Fermi level E_F are found to have hybridized character of LUMO and LUMO+1 picene molecular orbitals. Fermi surfaces of K3picene manifest neither prominent nesting feature nor marked two-dimensional behavior. By estimating the ratio of the Coulomb interaction U and the band width W of the active bands near E_F, U/W, we have demonstrated that K3picene is located in the vicinity of the Mott transition.Comment: 5 pages, 5 figure

    Selective axonal growth of embryonic hippocampal neurons according to topographic features of various sizes and shapes

    Get PDF
    David Y Fozdar1*, Jae Y Lee2*, Christine E Schmidt2–6, Shaochen Chen1,3–5,7,1Departments of Mechanical Engineering, 2Chemical Engineering, 3Biomedical Engineering; 4Center for Nano Molecular Science and Technology; 5Texas Materials Institute; 6Institute of Neuroscience; 7Microelectronics Research Center, The University of Texas at Austin, Austin, TX, USA *Contributed equally to this workPurpose: Understanding how surface features influence the establishment and outgrowth of the axon of developing neurons at the single cell level may aid in designing implantable scaffolds for the regeneration of damaged nerves. Past studies have shown that micropatterned ridge-groove structures not only instigate axon polarization, alignment, and extension, but are also preferred over smooth surfaces and even neurotrophic ligands.Methods: Here, we performed axonal-outgrowth competition assays using a proprietary four-quadrant topography grid to determine the capacity of various micropatterned topographies to act as stimuli sequestering axon extension. Each topography in the grid consisted of an array of microscale (approximately 2 µm) or submicroscale (approximately 300 nm) holes or lines with variable dimensions. Individual rat embryonic hippocampal cells were positioned either between two juxtaposing topographies or at the borders of individual topographies juxtaposing unpatterned smooth surface, cultured for 24 hours, and analyzed with respect to axonal selection using conventional imaging techniques.Results: Topography was found to influence axon formation and extension relative to smooth surface, and the distance of neurons relative to topography was found to impact whether the topography could serve as an effective cue. Neurons were also found to prefer submicroscale over microscale features and holes over lines for a given feature size.Conclusion: The results suggest that implementing physical cues of various shapes and sizes on nerve guidance conduits and other advanced biomaterial scaffolds could help stimulate axon regeneration.Keywords: axon guidance, micropatterning, polarization, surface topography, tissue engineerin
    corecore