51 research outputs found
A Future of Current Flow Modelling for Transcranial Electrical Stimulation?
Purpose of Review: Transcranialelectrical stimulation (tES) is used to non-invasively modulate brain activityin health and disease. Current flow modeling (CFM) provides estimates of whereand how much electrical current is delivered to in the brain during tES. Ittherefore holds promise as a method to reduce commonplace variability in tESdelivery and, in turn, the outcomes of stimulation. However, the adoption ofCFM has not yet been widespread and its impact on tES outcome variability isunclear. Here, we discuss the potential barriers to effective, practicalCFM-informed tES use. Recent Findings: CFMhas progressed from models based on concentric spheres to gyri-precise headmodels derived from individual MRI scans. Users can now estimate the intensityof electrical fields (E-fields), their spatial extent, and the direction ofcurrent flow in a target brain region during tES. Here. we consider the multi-dimensionalchallenge of implementing CFM to optimise stimulation dose: this requiresinformed decisions to prioritise E-field characteristics most likely to resultin desired stimulation outcomes, though the physiological consequences of themodelled current flow are often unknown. Second, we address the issue of adisconnect between predictions of E-field characteristics provided by CFMs andpredictions of the physiological consequences of stimulation which CFMs are notdesigned to address. Third, we discuss how ongoing development of CFM inconjunction with other modelling approaches could overcome these challengeswhile maintaining accessibility for widespread use. Summary: Theincreasing complexity and sophistication of CFM is a mandatory step towards dosecontrol and precise, individualised delivery of tES. However, it also riskscounteracting the appeal of tES as a straightforward, cost-effective tool forneuromodulation, particularly in clinical settings
Central CD4+ T cell tolerance: deletion versus regulatory T cell differentiation
The diversion of MHC class II-restricted thymocytes into the regulatory T (Treg) cell lineage, similarly to clonal deletion, is driven by intrathymic encounter of agonist self-antigens. Somewhat paradoxically, it thus seems that the expression of an autoreactive T cell receptor is a shared characteristic of T cells that are subject to clonal deletion and those that are diverted into the Treg cell lineage. Here, we discuss how thymocyte-intrinsic and -extrinsic determinants may specify the choice between these two fundamentally different T cell fates
All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs
We present the first results from an all-sky all-frequency (ASAF) search for
an anisotropic stochastic gravitational-wave background using the data from the
first three observing runs of the Advanced LIGO and Advanced Virgo detectors.
Upper limit maps on broadband anisotropies of a persistent stochastic
background were published for all observing runs of the LIGO-Virgo detectors.
However, a broadband analysis is likely to miss narrowband signals as the
signal-to-noise ratio of a narrowband signal can be significantly reduced when
combined with detector output from other frequencies. Data folding and the
computationally efficient analysis pipeline, {\tt PyStoch}, enable us to
perform the radiometer map-making at every frequency bin. We perform the search
at 3072 {\tt{HEALPix}} equal area pixels uniformly tiling the sky and in every
frequency bin of width ~Hz in the range ~Hz, except for bins
that are likely to contain instrumental artefacts and hence are notched. We do
not find any statistically significant evidence for the existence of narrowband
gravitational-wave signals in the analyzed frequency bins. Therefore, we place
confidence upper limits on the gravitational-wave strain for each
pixel-frequency pair, the limits are in the range . In addition, we outline a method to identify candidate
pixel-frequency pairs that could be followed up by a more sensitive (and
potentially computationally expensive) search, e.g., a matched-filtering-based
analysis, to look for fainter nearly monochromatic coherent signals. The ASAF
analysis is inherently independent of models describing any spectral or spatial
distribution of power. We demonstrate that the ASAF results can be
appropriately combined over frequencies and sky directions to successfully
recover the broadband directional and isotropic results
GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run
The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15 ∶ 00 UTC and 1 October 2019 15 ∶ 00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a probability of astrophysical origin greater than 0.5. Of these candidates, 36 have been reported in GWTC-2. We also calculate updated source properties for all binary black hole events previously reported in GWTC-1. If the eight additional high-significance candidates presented here are astrophysical, the mass range of events that are unambiguously identified as binary black holes (both objects ≥ 3 M⊙ ) is increased compared to GWTC-2, with total masses from ∼ 14 M ⊙ for GW190924_021846 to ∼ 182 M⊙ for GW190426_190642. Source properties calculated using our default prior suggest that the primary components of two new candidate events (GW190403_051519 and GW190426_190642) fall in the mass gap predicted by pair-instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events (the mass ratio is less than 0.65 and 0.44 at 90% probability for GW190403_051519 and GW190917_114630 respectively), and find that two of the eight new events have effective inspiral spins χeff > 0 (at 90% credibility), while no binary is consistent with χeff < 0 at the same significance. We provide updated estimates for rates of binary black hole and binary neutron star coalescence in the local Universe
Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO–Virgo run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate
Gamelight - Gamification of the outdoor cycling experience
Copyright held by the owner/author(s). GameLight is a smart bicycle light that overlays a virtual game projected on the ground, within the user’s natural field of view while cycling. The system aims to enhance the cycling exertion experience by augmenting it with various game elements presented in two game modes: (1) an “Arcade" mode that implements a virtual coin collecting mechanic, and (2) a “Challenge" mode that provides timed effort challenges. The system consists of a pico-projector and mobile phone wirelessly connected to cadence, speed and heart rate sensors that serve as input to the virtually projected game to achieve a fun and playful effect while cycling in a controlled environment. This demo will be appealing to attendees interested in designing playful technology to support exertion
- …