5,801 research outputs found
Vortex-flow electromagnetic emission in stacked intrinsic Josephson junctions
We confirmed the existence of the collective transverse plasma modes excited
by the motion of the Josephson vortex lattice in stacked intrinsic Josephson
junctions of BiSrCaCuO by observing the multiple
subbranches in the Josephson-vortex-flow current-voltage characteristics. We
also observed the symptom of the microwave emission from the resonance between
the Josephson vortex lattice and the collective transverse plasma modes, which
provides the possibility of developing Josephson-vortex-flow electromagnetic
oscillators.Comment: 4 pages, 3 figure
Heating-compensated constant-temperature tunneling measurements on stacks of BiSrCaCuO intrinsic junctions
In highly anisotropic layered cuprates such as BiSrCaCuO
tunneling measurements on a stack of intrinsic junctions in a high-bias range
are often susceptible to self-heating. In this study we monitored the
temperature variation of a stack ("sample stack") of intrinsic junctions by
measuring the resistance change of a nearby stack ("thermometer stack") of
intrinsic junctions, which was strongly thermal-coupled to the sample stack
through a common Au electrode. We then adopted a
proportional-integral-derivative scheme incorporated with a substrate-holder
heater to compensate the temperature variation. This in-situ temperature
monitoring and controlling technique allows one to get rid of spurious
tunneling effects arising from the self-heating in a high bias range.Comment: 3 pages, 3 figure
Collective Josephson vortex dynamics in a finite number of intrinsic Josephson junctions
We report the experimental confirmation of the collective transverse plasma
modes excited by the Josephson vortex lattice in stacks of intrinsic Josephson
junctions in BiSrCaCuO single crystals. The
excitation was confirmed by analyzing the temperature () and magnetic field
() dependencies of the multiple sub-branches in the Josephson-vortex-flow
region of the current-voltage characteristics of the system. In the near-static
Josephson vortex state for a low tunneling bias current, pronounced
magnetoresistance oscillations were observed, which represented a
triangular-lattice vortex configuration along the c axis. In the dynamic vortex
state in a sufficiently high magnetic field and for a high bias current,
splitting of a single Josephson vortex-flow branch into multiple sub-branches
was observed. Detailed examination of the sub-branches for varying field
reveals that sub-branches represent the different modes of the Josephson-vortex
lattice along the c axis, with varied configuration from a triangular to a
rectangular lattices. These multiple sub-branches merge to a single curve at a
characteristic temperature, above which no dynamical structural transitions of
the Josephson vortex lattice is expected
Progressive evolution of tunneling characteristics of in-situ fabricated intrinsic Josephson junctions in Bi_2Sr_2CaCu_2O_{8+delta} single crystals
Stacks of a few intrinsic tunnel junctions were micro-fabricated on the
surface of Bi-2212 single crystals. The number of junctions in a stack was
tailored by progressively increasing the height of the stack by ion-beam
etching, while its tunneling characteristics were measured in-situ in a vacuum
chamber for temperatures down to ~13 K. Using this in-situ etching/measurements
technique in a single piece of crystal, we systematically excluded any spurious
effects arising from variations in the junction parameters and made clear
analysis on the following properties of the surface and inner conducting
planes. First, the tunneling resistance and the current-voltage curves are
scaled by the surface junction resistance. Second, we confirm that the
reduction in both the gap and the superconducting transition temperature of the
surface conducting plane in contact with a normal metal is not caused by the
variation in the doping level, but is caused by the proximity contact. Finally,
the main feature of a junction is not affected by the presence of other
junctions in a stack in a low bias region.Comment: 25 pages, 7 figures, submitted to Phys. Rev.
Suppressed Superconductivity of the Surface Conduction Layer in BiSrCaCuO Single Crystals Probed by {\it c}-Axis Tunneling Measurements
We fabricated small-size stacks on the surface of
BiSrCaCuO (BSCCO-2212) single crystals with the bulk
transition temperature 90 K, each containing a few intrinsic
Josephson junctions. Below a critical temperature ( ), we have
observed a weakened Josephson coupling between the CuO superconducting
double layer at the crystal surface and the adjacent one located deeper inside
a stack. The quasiparticle branch in the data of the weakened Josephson
junction (WJJ) fits well to the tunneling characteristics of a d-wave
superconductor()/insulator/d-wave superconductor (DID) junction. Also,
the tunneling resistance in the range agrees well with the
tunneling in a normal metal/insulator/d-wave superconductor (NID) junction. In
spite of the suppressed superconductivity at the surface layer the symmetry of
the order parameter appears to remain unaffected.Comment: 13 pages, 6 figure
- …