66 research outputs found

    Catalytic carbonization of an uncarbonizable precursor by transition metals in olivine cathode materials of lithium ion batteries

    Get PDF
    Herein, we report on catalytic effects of transition metals (Me) in phospho-olivines (LiMePO4) on carbonization of cetyltrimethylammonium bromide (CTAB). Carbon coating is the required process to enhance electronic conductivity of phospho-olivines that are used as cathode materials for lithium ion batteries. Primary particles of phospho-olivines were in situ coated with CTAB and the adsorbed carbon precursor was carbonized to provide an electrically conductive pathway. CTAB was successfully carbonized in a significant amount with Fe in phospho-olivines (LiFexMn1-xPO4 with x = 1 and 0.5) even if CTAB is thermally decomposed around 300 degrees C without any residual mass in the absence of the phospho-olivines. LiMnPO4 was the most inferior in terms of CTAB adsorption and thermal carbonization. LiNiPO4 and LiCoPO4 showed inefficient conversion of adsorbed CTAB to carbon even if their adsorption ability for CTAB is quite large. Also, the effect of the amount of carbon coating on LiFePO4 was investigated, leading to a conclusion that the carbon thickness balanced between electronic and ionic conductances results in the best electrochemical performances of lithium ion batteries specifically at high discharge rates.close1

    The impact of a quality improvement effort in reducing admission hypothermia in preterm infants following delivery

    Get PDF
    Purpose Hypothermia at admission is associated with increased mortality and morbidity in preterm infants. We performed a quality improvement (QI) effort to determine the impact of a decrease in admission hypothermia in preterm infants. Methods The study enrolled very low birth weight (VLBW) infants born at Gangnam Severance Hospital between January 2013 and December 2016. This multidisciplinary QI effort included the use of occlusive wraps, warm blankets, and caps; the delivery room temperature was maintained above 23.0หšC, and a check-list was used for feedback. Results Among 259 preterm infants, the incidence of hypothermia (defined as body temperature <36.0หšC) decreased significantly from 68% to 41%, and the mean body temperature on neonatal intensive care unit admission increased significantly from 35.5หšC to 36.0หšC. In subgroup analysis of VLBW infants, admission hypothermia and neonatal outcomes were compared between the pre-QI (n=55) and post-QI groups (n=75). Body temperature on admission increased significantly from 35.4หšC to 35.9หšC and the number of infants with hypothermia decreased significantly from 71% to 45%. There were no cases of neonatal hyperthermia. The incidence of pulmonary hemorrhage was significantly decreased (P=0.017). Interaction analysis showed that birth weight and gestational age were not correlated with hypothermia following implementation of the protocol. Conclusion Our study demonstrated a significant reduction in admission hypothermia following the introduction of a standardized protocol in our QI effort. This resulted in an effective reduction in the incidence of massive pulmonary hemorrhage

    Complete genome sequence of Middle East respiratory syndrome coronavirus KOR/KNIH/002_05_2015, isolated in South Korea

    Get PDF
    The full genome sequence of a Middle East respiratory syndrome coronavirus (MERS-CoV) was identified from cultured and isolated in Vero cells. The viral genome sequence has high similarity to 53 human MERS-CoVs, ranging from 99.5% to 99.8% at the nucleotide level. ยฉ 2015 Kim et al.

    Regulation of synaptic Rac1 activity, long-term potentiation maintenance, and learning and memory by BCR and ABR Rac GTPase-activating proteins

    Get PDF
    Rho family small GTPases are important regulators of neuronal development. Defective Rho regulation causes nervous system dysfunctions including mental retardation and Alzheimer's disease. Rac1, a member of the Rho family, regulates dendritic spines and excitatory synapses, but relatively little is known about how synaptic Rac1 is negatively regulated. Breakpoint cluster region (BCR) is a Rac GTPase-activating protein known to form a fusion protein with the c-Abl tyrosine kinase in Philadelphia chromosome-positive chronic myelogenous leukemia. Despite the fact that BCR mRNAs are abundantly expressed in the brain, the neural functions of BCR protein have remained obscure. We report here that BCR and its close relative active BCR-related (ABR) localize at excitatory synapses and directly interact with PSD-95, an abundant postsynaptic scaffolding protein. Mice deficient for BCR or ABR show enhanced basal Rac1 activity but only a small increase in spine density. Importantly, mice lacking BCR or ABR exhibit a marked decrease in the maintenance, but not induction, of long-term potentiation, and show impaired spatial and object recognition memory. These results suggest that BCR and ABR have novel roles in the regulation of synaptic Rac1 signaling, synaptic plasticity, and learning and memory, and that excessive Rac1 activity negatively affects synaptic and cognitive functions.This work was supported by the National Creative Research Initiative Program of the Korean Ministry of Education, Science and Technology (E.K.), Neuroscience Program Grant 2009-0081468 (S.-Y.C.), 21st Century Frontier R&D Program in Neuroscience Grant 2009K001284 (H.K.), Basic Science Research Program Grant R13-2008-009-01001-0 (Y.C.B.), and United States Public Health Service Grants HL071945 (J.G.) and HL060231 (J.G., N.H.)

    Spatiotemporal Evaluation of Water Quality and Hazardous Substances in Small Coastal Streams According to Watershed Characteristics

    No full text
    In this study, spatial and temporal changes of eight water quality indicators and 30 types of hazardous substances including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, and inorganic matters for the small coastal streams along the West Coast of South Korea were investigated. In coastal streams with clear seasonal changes in water quality, larger watershed areas led to greater contamination by particulate matter (i.e., suspended solids, r = 0.89), and smaller watershed areas led to greater contamination by organic matter (i.e., BOD, r = &minus;0.78). The concentration of VOCs and pesticides was higher in agricultural areas, and those of SVOCs and metals were often higher in urban areas. According to the principal component analysis (PCA), during the wet season, the fluctuation in the water quality of coastal streams was higher in urban areas than in agricultural areas. Furthermore, coastal streams in residential areas exhibited higher levels of SVOCs, and those in industrial areas exhibited higher levels of metallic substances. Based on these results, the spatial and temporal trends of water quality and hazardous substances were obtained according to watershed characteristics, thereby clarifying the pollution characteristics of small-scale coastal streams and the major influencing factors

    A Novel Procedure of Total Organic Carbon Analysis for Water Samples Containing Suspended Solids with Alkaline Extraction and Homogeneity Evaluation by Turbidity

    No full text
    This study was conducted to develop and validate a more reliable total organic carbon (TOC) analytical procedure for water samples containing suspended solids (SS). The effects of the combined ultrasonic and alkaline pretreatment (CULA) on the TOC measurement were studied in water samples containing SS from three origins (algae, sewage particles, and soil) under different analytical conditions (SS concentration, oxidation methods, and sieve size). The applicability of turbidity as a homogeneity index was also evaluated. With CULA, TOC recovery remained high (&gt;80%) for SS concentration ranges up to four times larger than ultrasonic pretreatment alone (UL) due to enhanced particulate organic carbon (POC) solubilization, and did not significantly differ depending on the oxidation methods, at low SS concentrations, or with varying sieve sizes. In particular, the turbidity change rate (i.e., NTU5/NTU0) of the pretreated water sample showed a high correlation with TOC precision (r2 = 0.73, p &lt; 0.01), which suggests that turbidity can be used as an indicator of sample homogeneity. A novel TOC analytical procedure is expected to be useful for more accurate assessments of the impact of particulate pollutants on water quality than current methods, and for the analysis of the carbon cycle, including POCs, in the environment

    Terrain Proxy-Based Site Classification for Seismic Zonation in North Korea within a Geospatial Data-Driven Workflow

    No full text
    Numerous seismic activities occur in North Korea. However, it is difficult to perform seismic hazard assessment and obtain zonal data in the Korean Peninsula, including North Korea, when applying parametric or nonparametric methods. Remote sensing can be implemented for soil characterization or spatial zonation studies on irregular, surficial, and subsurface systems of inaccessible areas. Herein, a data-driven workflow for extracting the principal features using a digital terrain model (DTM) is proposed. In addition, geospatial grid information containing terrain features and the average shear wave velocity in the top 30 m of the subsurface (VS30) are employed using geostatistical interpolation methods; machine learning (ML)-based regression models were optimized and VS30-based seismic zonation in the test areas in North Korea were forecasted. The interrelationships between VS30 and terrain proxy (elevation, slope, and landform class) in the training area in South Korea were verified to define the input layer in regression models. The landform class represents a new proxy of VS30 and was subgrouped according to the correlation with grid-based VS30. The geospatial grid information was generated via the optimum geostatistical interpolation method (i.e., sequential Gaussian simulation (SGS)). The best-fitting model among four ML methods was determined by evaluating cost function-based prediction performance, performing uncertainty analysis for the empirical correlations of VS30, and studying spatial correspondence with the borehole-based VS30 map. Subsequently, the best-fitting regression models were designed by training the geospatial grid in South Korea. Then, DTM and its terrain features were constructed along with VS30 maps for three major cities (Pyongyang, Kaesong, and Nampo) in North Korea. A similar distribution of the VS30 grid obtained using SGS was shown in the multilayer perceptron-based VS30 map

    Restricted growth of LiMnPO4 nanoparticles evolved from a precursor seed

    No full text
    Herein, we report on a novel precipitation method to enable LiMnPO4 olivine (LMP) as a cathode material for lithium ion batteries (LIBs) to reach high capacity at high discharge rates. By confining Mn-3(PO4)(2) precipitation on surface of a precursor seed of Li3PO4, the size of LMP particles is limited to less than 100 nm for a smaller dimension. The cathode material delivers discharge capacities of 145 mAh g(-1) at 0.1 C. 112 mAh g(-1) at 1 C to 62 mAh g(-1) at 5 C (comparable with top three performances [1-3]). Even if precipitation is one of the versatile strategies to prepare the cathode material, it has not been reported that such a first-tier high performance is obtained from LMP prepared by precipitation methods. When compared with LMP particles synthesized by a conventional co-precipitation method, the performances are recognized to be considerably enhanced. Also, the surface-confined precipitation process described in this work does not involve a ball milling step with a conductive agent such as carbon black [1,2,4-10] so that a low cost synthesis is feasible.close1
    • โ€ฆ
    corecore