346 research outputs found

    Assessing lifetime stressor exposure in sport performers:Associations with trait stress appraisals, health, well-being, and performance

    Get PDF
    Research has found that greater lifetime stressor exposure increases the risk for mental and physical health problems. Despite this, few studies have examined how stressors occurring over the entire lifespan affect sport performers’ health, well-being, and performance, partly due to the difficulty of assessing lifetime stressor exposure. To address this issue, we developed a sport-specific stress assessment module (Sport SAM) for the Stress and Adversity Inventory (STRAIN) and then analyzed the instrument’s usability, acceptability, validity, and test-retest reliability. Furthermore, we examined whether trait-like tendencies to appraise stressful situations as a challenge or threat mediated the association between lifetime stressor exposure and health, well-being, and performance. Participants were 395 sport performers (M(age) = 22.50 years, SD = 5.33) who completed an online survey. Results revealed that the Sport SAM demonstrated good usability and acceptability, good concurrent validity in relation to the Adult STRAIN (rs = 0.23 to 0.29), and very good test-retest reliability (r(icc) = 0.87 to 0.89). Furthermore, the Sport SAM was significantly associated with symptoms of depression (ÎČ = 0.21 to 0.24, ps ≀ .001) and anxiety (ÎČ = 0.13 to 0.19, ps ≀ .012), and general physical (ÎČ = 0.24 to 0.27, ps = ≀ 0.001) and mental (ÎČ = 0.23 to 0.32, p ≀ .001) health complaints. Finally, we found that associations between total lifetime non-sport and sport-specific stressor severity and health were mediated by trait stress appraisals. Consequently, these findings may help practitioners better identify sport performers who are at risk of developing stress-related health problems

    Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions

    Get PDF
    Priming rice seeds (soaking followed by drying) or soaking just before sowing improved emergence from flooded soil, reduced membrane damage from ROS and hastened carbohydrate mobilization. Most benefit was to lines with a superior ability to germinate in flooded soil even when untreated

    Piglet Immunization with a Spike Subunit Vaccine Enhances Disease by Porcine Epidemic Diarrhea Virus

    Get PDF
    Immunization with an insect cell lysate/baculovirus mixture containing recombinant porcine epidemic diarrhea virus (PEDV) spike protein induced high levels of neutralizing antibodies in both mice and piglets. However, immunization of piglets with this vaccine resulted in enhancement of disease symptoms and virus replication in vaccine recipients exposed to PEDV challenge. Thus, these observations demonstrate a previously unrecognized challenge of PEDV vaccine research, which has important implications for coronavirus vaccine development

    A Deep-Learning Algorithm to Predict Short-Term Progression to Geographic Atrophy on Spectral-Domain Optical Coherence Tomography

    Get PDF
    IMPORTANCE: The identification of patients at risk of progressing from intermediate age-related macular degeneration (iAMD) to geographic atrophy (GA) is essential for clinical trials aimed at preventing disease progression. DeepGAze is a fully automated and accurate convolutional neural network-based deep learning algorithm for predicting progression from iAMD to GA within 1 year from spectral-domain optical coherence tomography (SD-OCT) scans. OBJECTIVE: To develop a deep-learning algorithm based on volumetric SD-OCT scans to predict the progression from iAMD to GA during the year following the scan. DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study included participants with iAMD at baseline and who either progressed or did not progress to GA within the subsequent 13 months. Participants were included from centers in 4 US states. Data set 1 included patients from the Age-Related Eye Disease Study 2 AREDS2 (Ancillary Spectral-Domain Optical Coherence Tomography) A2A study (July 2008 to August 2015). Data sets 2 and 3 included patients with imaging taken in routine clinical care at a tertiary referral center and associated satellites between January 2013 and January 2023. The stored imaging data were retrieved for the purpose of this study from July 1, 2022, to February 1, 2023. Data were analyzed from May 2021 to July 2023. EXPOSURE: A position-aware convolutional neural network with proactive pseudointervention was trained and cross-validated on Bioptigen SD-OCT volumes (data set 1) and validated on 2 external data sets comprising Heidelberg Spectralis SD-OCT scans (data sets 2 and 3). MAIN OUTCOMES AND MEASURES: Prediction of progression to GA within 13 months was evaluated with area under the receiver-operator characteristic curves (AUROC) as well as area under the precision-recall curve (AUPRC), sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. RESULTS: The study included a total of 417 patients: 316 in data set 1 (mean [SD] age, 74 [8]; 185 [59%] female), 53 in data set 2, (mean [SD] age, 83 [8]; 32 [60%] female), and 48 in data set 3 (mean [SD] age, 81 [8]; 32 [67%] female). The AUROC for prediction of progression from iAMD to GA within 1 year was 0.94 (95% CI, 0.92-0.95; AUPRC, 0.90 [95% CI, 0.85-0.95]; sensitivity, 0.88 [95% CI, 0.84-0.92]; specificity, 0.90 [95% CI, 0.87-0.92]) for data set 1. The addition of expert-annotated SD-OCT features to the model resulted in no improvement compared to the fully autonomous model (AUROC, 0.95; 95% CI, 0.92-0.95; P = .19). On an independent validation data set (data set 2), the model predicted progression to GA with an AUROC of 0.94 (95% CI, 0.91-0.96; AUPRC, 0.92 [0.89-0.94]; sensitivity, 0.91 [95% CI, 0.74-0.98]; specificity, 0.80 [95% CI, 0.63-0.91]). At a high-specificity operating point, simulated clinical trial recruitment was enriched for patients progressing to GA within 1 year by 8.3- to 20.7-fold (data sets 2 and 3). CONCLUSIONS AND RELEVANCE: The fully automated, position-aware deep-learning algorithm assessed in this study successfully predicted progression from iAMD to GA over a clinically meaningful time frame. The ability to predict imminent GA progression could facilitate clinical trials aimed at preventing the condition and could guide clinical decision-making regarding screening frequency or treatment initiation

    'To live and die [for] Dixie': Irish civilians and the Confederate States of America

    Get PDF
    Around 20,000 Irishmen served in the Confederate army in the Civil War. As a result, they left behind, in various Southern towns and cities, large numbers of friends, family, and community leaders. As with native-born Confederates, Irish civilian support was crucial to Irish participation in the Confederate military effort. Also, Irish civilians served in various supporting roles: in factories and hospitals, on railroads and diplomatic missions, and as boosters for the cause. They also, however, suffered in bombardments, sieges, and the blockade. Usually poorer than their native neighbours, they could not afford to become 'refugees' and move away from the centres of conflict. This essay, based on research from manuscript collections, contemporary newspapers, British Consular records, and Federal military records, will examine the role of Irish civilians in the Confederacy, and assess the role this activity had on their integration into Southern communities. It will also look at Irish civilians in the defeat of the Confederacy, particularly when they came under Union occupation. Initial research shows that Irish civilians were not as upset as other whites in the South about Union victory. They welcomed a return to normalcy, and often 'collaborated' with Union authorities. Also, Irish desertion rates in the Confederate army were particularly high, and I will attempt to gauge whether Irish civilians played a role in this. All of the research in this paper will thus be put in the context of the Drew Gilpin Faust/Gary Gallagher debate on the influence of the Confederate homefront on military performance. By studying the Irish civilian experience one can assess how strong the Confederate national experiment was. Was it a nation without a nationalism

    Dietary supplementation with New Zealand blackcurrant extract enhances fat oxidation during submaximal exercise in the heat

    Get PDF
    Objectives. This study investigated the effect of 7 days’ supplementation with New Zealand blackcurrant extract on thermoregulation and substrate metabolism during running in the heat. Design. Randomized, double-blind, cross-over study. Methods. Twelve men and six women (mean ± SD: Age 27 ± 6 years, height 1.76 ± 0.10 m, mass 74 ± 12 kg, V˙ O2max 53.4 ± 7.0 mL kg−1 min−1) completed one assessment of maximal aerobic capacity and one familiarisation trial (18 ◩C, 40% relative humidity, RH), before ingesting 2 × 300 mg day−1 capsules of CurraNZTM (each containing 105 mg anthocyanin) or a visually matched placebo (2 × 300 mg microcrystalline cellulose M102) for 7days (washout 14 days). On day 7 of each supplementation period, participants completed 60 min of fasted running at 65% V˙ O2max in hot ambient conditions (34 ◩C and 40% relative humidity). Results: Carbohydrate oxidation was decreased in the NZBC trial [by 0.24 g min−1 (95% CI: 0.21–0.27 g min-1)] compared to placebo (p = 0.014, d = 0.46), and fat oxidation was increased in the NZBC trial [by 0.12 g min−1 (95% CI: 0.10 to 0.15 g min−1)], compared to placebo (p = 0.008, d = 0.57). NZBC did not influence heart rate (p = 0.963), rectal temperature (p = 0.380), skin temperature (p = 0.955), body temperature (p = 0.214) or physiological strain index (p = 0.705) during exercise. Conclusions. Seven-days intake of 600 mg NZBC extract increased fat oxidation without influencing cardiorespiratory or thermoregulatory variables during prolonged moderate intensity running in hot conditions

    Biallelic variants in OGDH encoding oxoglutarate dehydrogenase lead to a neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities

    Get PDF
    PURPOSE: This study aimed to establish the genetic cause of a novel autosomal recessive neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities. METHODS: We performed a detailed clinical characterization of 4 unrelated individuals from consanguineous families with a neurodevelopmental disorder. We used exome sequencing or targeted-exome sequencing, cosegregation, in silico protein modeling, and functional analyses of variants in HEK293 cells and Drosophila melanogaster, as well as in proband-derived fibroblast cells. RESULTS: In the 4 individuals, we identified 3 novel homozygous variants in oxoglutarate dehydrogenase (OGDH) (NM_002541.3), which encodes a subunit of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase. In silico homology modeling predicts that c.566C>T:p.(Pro189Leu) and c.890C>A:p.(Ser297Tyr) variants interfere with the structure and function of OGDH. Fibroblasts from individual 1 showed that the p.(Ser297Tyr) variant led to a higher degradation rate of the OGDH protein. OGDH protein with p.(Pro189Leu) or p.(Ser297Tyr) variants in HEK293 cells showed significantly lower levels than the wild-type protein. Furthermore, we showed that expression of Drosophila Ogdh (dOgdh) carrying variants homologous to p.(Pro189Leu) or p.(Ser297Tyr), failed to rescue developmental lethality caused by loss of dOgdh. SpliceAI, a variant splice predictor, predicted that the c.935G>A:p.(Arg312Lys)/p.(Phe264_Arg312del) variant impacts splicing, which was confirmed through a mini-gene assay in HEK293 cells. CONCLUSION: We established that biallelic variants in OGDH cause a neurodevelopmental disorder with metabolic and movement abnormalities

    Imaging-based clusters in former smokers of the COPD cohort associate with clinical characteristics: the SubPopulations and intermediate outcome measures in COPD study (SPIROMICS)

    Get PDF
    Background: Quantitative computed tomographic (QCT) imaging-based metrics enable to quantify smoking induced disease alterations and to identify imaging-based clusters for current smokers. We aimed to derive clinically meaningful sub-groups of former smokers using dimensional reduction and clustering methods to develop a new way of COPD phenotyping. Methods: An imaging-based cluster analysis was performed for 406 former smokers with a comprehensive set of imaging metrics including 75 imaging-based metrics. They consisted of structural and functional variables at 10 segmental and 5 lobar locations. The structural variables included lung shape, branching angle, airway-circularity, airway-wall-thickness, airway diameter; the functional variables included regional ventilation, emphysema percentage, functional small airway disease percentage, Jacobian (volume change), anisotropic deformation index (directional preference in volume change), and tissue fractions at inspiration and expiration. Results: We derived four distinct imaging-based clusters as possible phenotypes with the sizes of 100, 80, 141, and 85, respectively. Cluster 1 subjects were asymptomatic and showed relatively normal airway structure and lung function except airway wall thickening and moderate emphysema. Cluster 2 subjects populated with obese females showed an increase of tissue fraction at inspiration, minimal emphysema, and the lowest progression rate of emphysema. Cluster 3 subjects populated with older males showed small airway narrowing and a decreased tissue fraction at expiration, both indicating air-trapping. Cluster 4 subjects populated with lean males were likely to be severe COPD subjects showing the highest progression rate of emphysema. Conclusions: QCT imaging-based metrics for former smokers allow for the derivation of statistically stable clusters associated with unique clinical characteristics. This approach helps better categorization of COPD sub-populations; suggesting possible quantitative structural and functional phenotypes.NIH [U01-HL114494, R01-HL112986, S10-RR022421]; Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2017R1D1A1B03034157]; Korea Ministry of Environment (MOE) [RE201806039]; NIH/NHLBI [HHSN268200900013C, HHSN268200900014C, HHSN268200900015C, HHSN268200900016C, HHSN268200900017C, HHSN268200900018C, HHSN268200900019C, HHSN268200900020C]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Overview of Spirit Microscopic Imager Results

    Get PDF
    This paper provides an overview of Mars Exploration Rover Spirit Microscopic Imager (MI) operations and the calibration, processing, and analysis of MI data. The focus of this overview is on the last five Earth years (2005-2010) of Spirit's mission in Gusev crater, supplementing the previous overview of the first 450 sols of the Spirit MI investigation. Updates to radiometric calibration using in-flight data and improvements in high-level processing are summarized. Released data products are described, and a table of MI observations, including target/feature names and associated data sets, is appended. The MI observed natural and disturbed exposures of rocks and soils as well as magnets and other rover hardware. These hand-lens-scale observations have provided key constraints on interpretations of the formation and geologic history of features, rocks, and soils examined by Spirit. MI images complement observations by other Spirit instruments, and together show that impact and volcanic processes have dominated the origin and evolution of the rocks in Gusev crater, with aqueous activity indicated by the presence of silica-rich rocks and sulfate-rich soils. The textures of some of the silica-rich rocks are similar to terrestrial hot spring deposits, and observations of subsurface cemented layers indicate recent aqueous mobilization of sulfates in places. Wind action has recently modified soils and abraded many of the rocks imaged by the MI, as observed at other Mars landing sites. Plain Language Summary The Microscopic Imager (MI) on NASA's Spirit rover returned the highest-resolution images of the Martian surface available at the time of the 2004-2010 mission. Designed to survive 90 Mars days (sols) and search for evidence of water in the past, Spirit returned data for 2210 sols, far exceeding all expectations. This paper summarizes the scientific insights gleaned from the thousands of MI images acquired during the last 5years of the mission, supplementing the summary of the first 450 sols of the Spirit MI investigation published previously (Herkenhoff et al., ). Along with data from the other instruments on Spirit, MI images guided the scientific interpretation of the geologic history of the rocks and soils observed in Gusev crater on Mars. We conclude that the geologic history of the area explored by Spirit has been dominated by impacts and volcanism, and that water, perhaps very hot water, was involved in the evolution of some of the rocks and soils. More recently, winds have moved soil particles and abraded rocks, as observed elsewhere on Mars. These results have improved our understanding of Mars' history and informed planning of future missions to Mars.National Aeronautics and Space AdministrationPublic domain articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    • 

    corecore