3,929 research outputs found

    Equilibrium Environmental Taxes on Intermediate-Good Production When Markets are Vertically Related in Open Economies

    Get PDF
    vertically related market, pollution tax on the intermediate-good, trans-boundary pollution, rent capture

    Meson Mass at Large Baryon Chemical Potential in Dense QCD

    Get PDF
    We reexamine the quark mass induced term in chiral Lagrangian in color-flavor locking phase in dense QCD, and show that the meson mass term is determined by three independent invariants under chiral-axial symmetry, and a meson mass is given in terms of the quark mass, gap, and the chemical potential by mπ2mq2ΔΔˉ/μ2ln(μ2/Δ2)m_{\pi}^2\sim m_q^2\Delta\bar{\Delta}/\mu^2\ln(\mu^2/\Delta^2). Thus mesons become massless as μ\mu\to\infty.Comment: 7 pages, no figures; made antiparticle gap explicit; to appear Phys. Lett.

    Cases of ethical violation in research publications: through editorial decision making process

    Get PDF
    Purpose – To improve and strengthen existing publication and research ethics, KODISA has identified and presented various cases which have violated publication and research ethics and principles in recent years. The editorial office of KODISA has been providing and continues to provide advice and feedback on publication ethics to researchers during peer review and editorial decision making process. Providing advice and feedback on publication ethics will ensure researchers to have an opportunity to correct their mistakes or make appropriate decisions and avoid any violations in research ethics. The purpose of this paper is to identify different cases of ethical violation in research and inform and educate researchers to avoid any violations in publication and research ethics. Furthermore, this article will demonstrate how KODISA journals identify and penalize ethical violations and strengthens its publication ethics and practices. Research design, data and methodology – This paper examines different types of ethical violation in publication and research ethics. The paper identifies and analyzes all ethical violations in research and combines them into five general categories. Those five general types of ethical violations are thoroughly examined and discussed. Results – Ethical violations of research occur in various forms at regular intervals; in other words, unethical researchers tend to commit different types of ethical violations repeatedly at same time. The five categories of ethical violation in research are as follows: (1) Arbitrary changes or additions in author(s) happen frequently in thesis/dissertation related publications. (2) Self plagiarism, submitting same work or mixture of previous works with or without using proper citations, also occurs frequently, but the most common type of plagiarism is changing the statistical results and using them to present as the results of the empirical analysis; (3) Translation plagiarism, another ethical violation in publication, is difficult to detect but occurs frequently; (4) Fabrication of data or statistical analysis also occurs frequently. KODISA requires authors to submit the results of the empirical analysis of the paper (the output of the statistical program) to prevent this type of ethical violation; (5) Mashup or aggregator plagiarism, submitting a mix of several different works with or without proper citations without alterations, is very difficult to detect, and KODISA journals consider this type of plagiarism as the worst ethical violation. Conclusions – There are some individual cases of ethical violation in research and publication that could not be included in the five categories presented throughout the paper. KODISA and its editorial office should continue to develop, revise, and strengthen their publication ethics, to learn and share different ways to detect any ethical violations in research and publication, to train and educate its editorial members and researchers, and to analyze and share different cases of ethical violations with the scholarly community

    Dependence of quantum-Hall conductance on the edge-state equilibration position in a bipolar graphene sheet

    Full text link
    By using four-terminal configurations, we investigated the dependence of longitudinal and diagonal resistances of a graphene p-n interface on the quantum-Hall edge-state equilibration position. The resistance of a p-n device in our four-terminal scheme is asymmetric with respect to the zero point where the filling factor (ν\nu) of the entire graphene vanishes. This resistance asymmetry is caused by the chiral-direction-dependent change of the equilibration position and leads to a deeper insight into the equilibration process of the quantum-Hall edge states in a bipolar graphene system.Comment: 5 pages, 4 figures, will be published in PR

    Observation of chiral quantum-Hall edge states in graphene

    Full text link
    In this study, we determined the chiral direction of the quantum-Hall (QH) edge states in graphene by adopting simple two-terminal conductance measurements while grounding different edge positions of the sample. The edge state with a smaller filling factor is found to more strongly interact with the electric contacts. This simple method can be conveniently used to investigate the chirality of the QH edge state with zero filling factor in graphene, which is important to understand the symmetry breaking sequence in high magnetic fields (\gtrsim25 T).Comment: 3 pages, 3 figures. Appeared in AP

    Role of LAB in Silage Fermentation: Effect on Nutritional Quality and Organic Acid Production—An Overview

    Get PDF
    Lactic acid bacteria (LAB) inocula play a key role in the preservation and fermentation of forage crops within inoculated silages. LAB is a significant group of the bacterial community as they successfully reduce pH, inhibit the survival of undesirable microorganisms and control nutrient loss in fermented silage. Ensiled plants and metabolites such as simple plant carbohydrates have been utilized by LAB (homo-fermentative and hetero-fermentative LAB) to initiate the production of organic acids including lactic and acetic acids. LAB as a biological silage additive provides stable feed value and secondary metabolic products during rapid anaerobic primary silage fermentation. They are able to ferment a large number of forage crops and also to reduce pH levels in fermented forages, which helps to suppress the growth of spoilage microorganisms. Furthermore, silage inoculants can enhance silage quality, nutritional recovery and shelf life of the inoculated product. When ingested silage, Lactobacilli in the rumen may degrade secondary plant metabolites as part of the rumen microbiota, along with endogenous enzymes. Also, the forages harvesting time are key factors in the development of essential metabolites particularly carbohydrates and proteins which is essential nutrition for LAB survival and production of organic acids. The higher population of LAB could reduce the pH faster and control of deleterious microbial growth in silage. This review presents LAB function in silage production and the potential impacts of its fermentative activity. In addition, the advantage of LAB additives in silage production is discussed, with a focus on recent literature
    corecore