1,808 research outputs found
Neurotensin : a study of its distribution, release and metabolism
Imperial Users onl
3,3′-Bis(3-methoxyÂbenzÂyl)-1,1′-ethylÂenediimidazolium dibromide
In the title compound, C24H28N4O2
2+·2Br−, the imidazolium cation is located on an inversion centre. The two imidazole rings are parallel to each other, whereas the imidazole and benzene rings make a dihedral angle of 77.25 (16)°. NonÂclassical interÂmolecular C—H⋯Br hydrogen bonds link the imidazolium cations and the bromide anions into a three-dimensional network
3,3′-Bis(4-fluoroÂbenzÂyl)-1,1′-ethylÂenediimidazolium tribromidocuprate(I)
The title compound, (C22H22F2N4)[CuBr3], crystallizes with the cation situated on an inversion center and the anion on a twofold rotation axis along one Cu—Br bond. The two imidazole rings are in an anti configuration. The anion has a trigonal planar coordination geometry
Hidden in plain sight:migration routes of the elusive Anadyr bartailed godwit revealed by satellite tracking
Satellite and GPS tracking technology continues to reveal new migration patterns of birds which enables comparative studies of migration strategies and distributional information useful in conservation. Bar-tailed godwits in the East Asian–Australasian Flyway Limosa lapponica baueri and L. l. menzbieri are known for their long non-stop flights, however these populations are in steep decline. A third subspecies in this flyway, L. l. anadyrensis, breeds in the Anadyr River basin, Chukotka, Russia, and is morphologically distinct from menzbieri and baueri based on comparison of museum specimens collected from breeding areas. However, the non-breeding distribution, migration route and population size of anadyrensis are entirely unknown. Among 24 female bar-tailed godwits tracked in 2015–2018 from northwest Australia, the main non-breeding area for menzbieri, two birds migrated further east than the rest to breed in the Anadyr River basin, i.e. they belonged to the anadyrensis subspecies. During pre-breeding migration, all birds staged in the Yellow Sea and then flew to the breeding grounds in the eastern Russian Arctic. After breeding, these two birds migrated southwestward to stage in Russia on the Kamchatka Peninsula and on Sakhalin Island en route to the Yellow Sea. This contrasts with the other 22 tracked godwits that followed the previously described route of menzbieri, i.e. they all migrated northwards to stage in the New Siberian Islands before turning south towards the Yellow Sea, and onwards to northwest Australia. Since the Kamchatka Peninsula was not used by any of the tracked menzbieri birds, the 4500 godwits counted in the Khairusova–Belogolovaya estuary in western Kamchatka may well be anadyrensis. Comparing migration patterns across the three bar-tailed godwits subspecies, the migration strategy of anadyrensis lies between that of menzbieri and baueri. Future investigations combining migration tracks with genomic data could reveal how differences in migration routines are evolved and maintained
POINeT: protein interactome with sub-network analysis and hub prioritization
<p>Abstract</p> <p>Background</p> <p>Protein-protein interactions (PPIs) are critical to every aspect of biological processes. Expansion of all PPIs from a set of given queries often results in a complex PPI network lacking spatiotemporal consideration. Moreover, the reliability of available PPI resources, which consist of low- and high-throughput data, for network construction remains a significant challenge. Even though a number of software tools are available to facilitate PPI network analysis, an integrated tool is crucial to alleviate the burden on querying across multiple web servers and software tools.</p> <p>Results</p> <p>We have constructed an integrated web service, POINeT, to simplify the process of PPI searching, analysis, and visualization. POINeT merges PPI and tissue-specific expression data from multiple resources. The tissue-specific PPIs and the numbers of research papers supporting the PPIs can be filtered with user-adjustable threshold values and are dynamically updated in the viewer. The network constructed in POINeT can be readily analyzed with, for example, the built-in centrality calculation module and an integrated network viewer. Nodes in global networks can also be ranked and filtered using various network analysis formulas, i.e., centralities. To prioritize the sub-network, we developed a ranking filtered method (S3) to uncover potential novel mediators in the midbody network. Several examples are provided to illustrate the functionality of POINeT. The network constructed from four schizophrenia risk markers suggests that EXOC4 might be a novel marker for this disease. Finally, a liver-specific PPI network has been filtered with adult and fetal liver expression profiles.</p> <p>Conclusion</p> <p>The functionalities provided by POINeT are highly improved compared to previous version of POINT. POINeT enables the identification and ranking of potential novel genes involved in a sub-network. Combining with tissue-specific gene expression profiles, PPIs specific to selected tissues can be revealed. The straightforward interface of POINeT makes PPI search and analysis just a few clicks away. The modular design permits further functional enhancement without hampering the simplicity. POINeT is available at <url>http://poinet.bioinformatics.tw/</url>.</p
Regulation of syntaxin1A–munc18 complex for SNARE pairing in HEK293 cells
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65811/1/jphysiol.2004.067249.pd
- …