18 research outputs found

    Neuromatch Academy: Teaching Computational Neuroscience with Global Accessibility

    Get PDF
    Neuromatch Academy (NMA) designed and ran a fully online 3-week Computational Neuroscience Summer School for 1757 students with 191 teaching assistants (TAs) working in virtual inverted (or flipped) classrooms and on small group projects. Fourteen languages, active community management, and low cost allowed for an unprecedented level of inclusivity and universal accessibility

    Cardiac Expression of Microsomal Triglyceride Transfer Protein Is Increased in Obesity and Serves to Attenuate Cardiac Triglyceride Accumulation

    Get PDF
    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and β-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease

    Variants of the microsomal triglyceride transfer protein gene are associated with plasma cholesterol levels and body mass index.

    No full text
    The microsomal triglyceride transfer protein (MTP) is required for the assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins from liver and intestine. We set out to study the phenotypic modulation of all common genetic variants in the MTP gene. In addition, we aimed at characterizing the association between the various polymorphisms. A total of 564 healthy men were genotyped for the MTP -493 G/T, -400 A/T, and -164 T/C promoter polymorphisms, as well as the Q/H 95, I/T 128, Q/E 244, and H/Q 297 missense polymorphisms. The -493 G/T, -164 T/C, and I/T 128 polymorphisms showed to be in almost complete linkage disequilibrium. Subjects homozygous for the less common -493 T, -164 C, and T 128 alleles showed significantly lower plasma total and LDL cholesterol levels and plasma LDL apoB levels, and also significantly higher body mass index (BMI) and plasma insulin levels compared with carriers of the common alleles. The associations between plasma total cholesterol and MTP -493 genotype was verified in a cohort consisting of 1,117 disease-free control subjects of the West of Scotland Coronary Prevention Study (WOSCOPS). None of the other polymorphisms showed any significant change in either lipid and lipoprotein levels or anthropometric variables. In summary, two promoter polymorphisms and one missense polymorphism in the MTP gene alter plasma total and LDL cholesterol levels, plasma LDL apoB levels, BMI, and insulin levels. This may, in turn, have implications for genetic regulation of cardiovascular risk factors

    The microsomal triglyceride transfer protein gene-493T variant lowers cholesterol but increases the risk of coronary heart disease.

    No full text
    BACKGROUND: The microsomal triglyceride transfer protein (MTP) transfers lipids into apolipoprotein B-containing lipoproteins for secretion from liver, intestine, and heart. The T-variant of a functional polymorphism in the MTP promoter, MTP-493G/T, has been associated with reduced low-density lipoprotein cholesterol concentrations. We hypothesize that this polymorphism impacts on coronary heart disease (CHD) risk. METHODS AND RESULTS: The effect of the polymorphism was therefore tested in the West of Scotland Coronary Prevention Study biobank (580 cases and 1160 controls). MTP-493T carrier status was associated with significantly increased risk of CHD despite a small reduction in total cholesterol. Compared with the genotypic group with the lowest event rate (MTP-493GG, pravastatin treatment), the respective odds ratios (95% confidence interval) in the placebo group for CHD events were: GG, 1.23 (0.92 to 1.63); GT, 1.53 (1.12 to 2.08); and TT, 2.78 (1.53 to 5.05), suggestive of a gene-dose effect. The excess risk for CHD of the MTP-493T-variant was eliminated by pravastatin treatment. The Uppsala Longitudinal Study of Adult Men (ULSAM), which is a 20-year follow-up study of CHD, was used as an independent confirmatory database. These unexpected findings prompted the investigation of non-plasma lipid factors that could associate the MTP gene with CHD risk. In a limited number of subjects (n=18), heart muscle biopsies showed a MTP-493T genotype-specific depression of MTP mRNA expression. CONCLUSIONS: The MTP-493T variant confers an increased risk of CHD that is unrelated to plasma lipids and lipoproteins, but eliminated by pravastatin treatment. A direct effect of the MTP polymorphism on myocardial lipid metabolism and vulnerability upon ischemic damage cannot be excluded
    corecore