32 research outputs found

    Insulin-like growth factor 2 (IGF2) protects against Huntington's disease through the extracellular disposal of protein aggregates

    Get PDF
    Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 (Igf2) as the major upregulated gene. Here, we studied the impact of IGF2 signaling on protein aggregation in models of Huntington's disease (HD) as proof of concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients and spinocerebellar ataxia cases. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 was independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human postmortem brain tissue and blood samples from HD patients showed a reduction in IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein species

    SProtP: A Web Server to Recognize Those Short-Lived Proteins Based on Sequence-Derived Features in Human Cells

    Get PDF
    Protein turnover metabolism plays important roles in cell cycle progression, signal transduction, and differentiation. Those proteins with short half-lives are involved in various regulatory processes. To better understand the regulation of cell process, it is important to study the key sequence-derived factors affecting short-lived protein degradation. Until now, most of protein half-lives are still unknown due to the difficulties of traditional experimental methods in measuring protein half-lives in human cells. To investigate the molecular determinants that affect short-lived proteins, a computational method was proposed in this work to recognize short-lived proteins based on sequence-derived features in human cells. In this study, we have systematically analyzed many features that perhaps correlated with short-lived protein degradation. It is found that a large fraction of proteins with signal peptides and transmembrane regions in human cells are of short half-lives. We have constructed an SVM-based classifier to recognize short-lived proteins, due to the fact that short-lived proteins play pivotal roles in the control of various cellular processes. By employing the SVM model on human dataset, we achieved 80.8% average sensitivity and 79.8% average specificity, respectively, on ten testing dataset (TE1-TE10). We also obtained 89.9%, 99% and 83.9% of average accuracy on an independent validation datasets iTE1, iTE2 and iTE3 respectively. The approach proposed in this paper provides a valuable alternative for recognizing the short-lived proteins in human cells, and is more accurate than the traditional N-end rule. Furthermore, the web server SProtP (http://reprod.njmu.edu.cn/sprotp) has been developed and is freely available for users

    Evolution and pathology in Chagas disease: a review

    Full text link

    Structure of the N-Linked Oligosaccharides From Tridacnin, a Lectin Found in the Hemolymph of the Giant Clam Hippopus-Hippopus

    No full text
    Tridacnin, a glycoprotein lectin, was isolated from the symbiotic marine clam Hippopus hippopus and the structure of its major N-glycan chains determined. Tridacnin contains only N-linked glycans which were quantitatively cleaved by peptide-N-4-(N-acetyl-beta-glucosaminyl)asparagine amidase F. Following purification by anion-exchange HPLC, the structures of the oligosaccharides were established using a combination of electrospray ionisation mass spectrometry, H-1-NMR spectroscopy and linkage analysis. The N-glycans are primarily of the oligomannose type but, in addition, some contain a novel 6-O-Me group on the terminal mannose residue of the chain. The N-glycan chains had the following structures

    Endoplasmic Reticulum (ER) Mannosidase I Is Compartmentalized and Required for N-Glycan Trimming to Man5–6GlcNAc2 in Glycoprotein ER-associated Degradation

    No full text
    We had previously shown that endoplasmic reticulum (ER)-associated degradation (ERAD) of glycoproteins in mammalian cells involves trimming of three to four mannose residues from the N-linked oligosaccharide Man9GlcNAc2. A possible candidate for this activity, ER mannosidase I (ERManI), accelerates the degradation of ERAD substrates when overexpressed. Although in vitro, at low concentrations, ERManI removes only one specific mannose residue, at very high concentrations it can excise up to four α1,2-linked mannose residues. Using small interfering RNA knockdown of ERManI, we show that this enzyme is required for trimming to Man5–6GlcNAc2 and for ERAD in cells in vivo, leading to the accumulation of Man9GlcNAc2 and Glc1Man9GlcNAc2 on a model substrate. Thus, trimming by ERManI to the smaller oligosaccharides would remove the glycoprotein from reglucosylation and calnexin binding cycles. ERManI is strikingly concentrated together with the ERAD substrate in the pericentriolar ER-derived quality control compartment (ERQC) that we had described previously. ERManI knockdown prevents substrate accumulation in the ERQC. We suggest that the ERQC provides a high local concentration of ERManI, and passage through this compartment would allow timing of ERAD, possibly through a cycling mechanism. When newly made glycoproteins cannot fold properly, transport through the ERQC leads to trimming of a critical number of mannose residues, triggering a signal for degradation
    corecore