41 research outputs found

    Long-range correlations and ensemble inequivalence in a generalized ABC model

    Full text link
    A generalization of the ABC model, a one-dimensional model of a driven system of three particle species with local dynamics, is introduced, in which the model evolves under either (i) density-conserving or (ii) nonconserving dynamics. For equal average densities of the three species, both dynamical models are demonstrated to exhibit detailed balance with respect to a Hamiltonian with long-range interactions. The model is found to exhibit two distinct phase diagrams, corresponding to the canonical (density-conserving) and grand canonical (density nonconserving) ensembles, as expected in long-range interacting systems. The implication of this result to nonequilibrium steady states, such as those of the ABC model with unequal average densities, are briefly discussed.Comment: 4 pages, 2 figures. v2: minor changes with an added reference, published versio

    Phase fluctuations in the ABC model

    Full text link
    We analyze the fluctuations of the steady state profiles in the modulated phase of the ABC model. For a system of LL sites, the steady state profiles move on a microscopic time scale of order L3L^3. The variance of their displacement is computed in terms of the macroscopic steady state profiles by using fluctuating hydrodynamics and large deviations. Our analytical prediction for this variance is confirmed by the results of numerical simulations

    Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments

    Full text link
    The study of the formation of molecular hydrogen on low temperature surfaces is of interest both because it allows to explore elementary steps in the heterogeneous catalysis of a simple molecule and because of the applications in astrochemistry. Here we report results of experiments of molecular hydrogen formation on amorphous silicate surfaces using temperature-programmed desorption (TPD). In these experiments beams of H and D atoms are irradiated on the surface of an amorphous silicate sample. The desorption rate of HD molecules is monitored using a mass spectrometer during a subsequent TPD run. The results are analyzed using rate equations and the activation energies of the processes leading to molecular hydrogen formation are obtained from the TPD data. We show that a model based on a single isotope provides the correct results for the activation energies for diffusion and desorption of H atoms. These results can thus be used to evaluate the formation rate of H_2 on dust grains under the actual conditions present in interstellar clouds.Comment: 30 pages, 1 table, 6 figures. Published versio

    Ensemble Inequivalence in the Spherical Spin Glass Model with Nonlinear Interactions

    Full text link
    We investigate the ensemble inequivalence of the spherical spin glass model with nonlinear interactions of polynomial order pp. This model is solved exactly for arbitrary pp and is shown to have first-order phase transitions between the paramagnetic and spin glass or ferromagnetic phases for p5p \geq 5. In the parameter region around the first-order transitions, the solutions give different results depending on the ensemble used for the analysis. In particular, we observe that the microcanonical specific heat can be negative and the phase may not be uniquely determined by the temperature.Comment: 15 pages, 10 figure

    The grand canonical ABC model: a reflection asymmetric mean field Potts model

    Full text link
    We investigate the phase diagram of a three-component system of particles on a one-dimensional filled lattice, or equivalently of a one-dimensional three-state Potts model, with reflection asymmetric mean field interactions. The three types of particles are designated as AA, BB, and CC. The system is described by a grand canonical ensemble with temperature TT and chemical potentials TλAT\lambda_A, TλBT\lambda_B, and TλCT\lambda_C. We find that for λA=λB=λC\lambda_A=\lambda_B=\lambda_C the system undergoes a phase transition from a uniform density to a continuum of phases at a critical temperature T^c=(2π/3)1\hat T_c=(2\pi/\sqrt3)^{-1}. For other values of the chemical potentials the system has a unique equilibrium state. As is the case for the canonical ensemble for this ABCABC model, the grand canonical ensemble is the stationary measure satisfying detailed balance for a natural dynamics. We note that T^c=3Tc\hat T_c=3T_c, where TcT_c is the critical temperature for a similar transition in the canonical ensemble at fixed equal densities rA=rB=rC=1/3r_A=r_B=r_C=1/3.Comment: 24 pages, 3 figure

    Ensemble Inequivalence and the Spin-Glass Transition

    Full text link
    We report on the ensemble inequivalence in a many-body spin-glass model with integer spin. The spin-glass phase transition is of first order for certain values of the crystal field strength and is dependent whether it was derived in the microcanonical or the canonical ensemble. In the limit of infinitely many-body interactions, the model is the integer-spin equivalent of the random-energy model, and is solved exactly. We also derive the integer-spin equivalent of the de Almeida-Thouless line.Comment: 19 pages, 7 figure

    Phase diagram of the ABC model with nonconserving processes

    Full text link
    The three species ABC model of driven particles on a ring is generalized to include vacancies and particle-nonconserving processes. The model exhibits phase separation at high densities. For equal average densities of the three species, it is shown that although the dynamics is {\it local}, it obeys detailed balance with respect to a Hamiltonian with {\it long-range interactions}, yielding a nonadditive free energy. The phase diagrams of the conserving and nonconserving models, corresponding to the canonical and grand-canonical ensembles, respectively, are calculated in the thermodynamic limit. Both models exhibit a transition from a homogeneous to a phase-separated state, although the phase diagrams are shown to differ from each other. This conforms with the expected inequivalence of ensembles in equilibrium systems with long-range interactions. These results are based on a stability analysis of the homogeneous phase and exact solution of the hydrodynamic equations of the models. They are supported by Monte-Carlo simulations. This study may serve as a useful starting point for analyzing the phase diagram for unequal densities, where detailed balance is not satisfied and thus a Hamiltonian cannot be defined.Comment: 32 page, 7 figures. The paper was presented at Statphys24, held in Cairns, Australia, July 201

    Molecular Hydrogen Formation on Amorphous Silicates Under Interstellar Conditions

    Get PDF
    Experimental results on the formation of molecular hydrogen on amorphous silicate surfaces are presented for the first time and analyzed using a rate equation model. The energy barriers for the relevant diffusion and desorption processes are obtained. They turn out to be significantly higher than those obtained earlier for polycrystalline silicates, demonstrating the importance of grain morphology. Using these barriers we evaluate the efficiency of molecular hydrogen formation on amorphous silicate grains under interstellar conditions. It is found that unlike polycrystalline silicates, amorphous silicate grains are efficient catalysts of H2_{2} formation within a temperature range which is relevant to diffuse interstellar clouds. The results also indicate that the hydrogen molecules are thermalized with the surface and desorb with low kinetic energy. Thus, they are unlikely to occupy highly excited states.Comment: 5 pages, 3 figures, 1 table. Accepted to ApJL. Shortened a bi

    Phase diagram of the ABC model with nonequal densities

    Full text link
    The ABC model is a driven diffusive exclusion model, composed of three species of particles that hop on a ring with local asymmetric rates. In the weak asymmetry limit, where the asymmetry vanishes with the length of the system, the model exhibits a phase transition between a homogenous state and a phase separated state. We derive the exact solution for the density profiles of the three species in the hydrodynamic limit for arbitrary average densities. The solution yields the complete phase diagram of the model and allows the study of the nature of the first order phase transition found for average densities that deviate significantly from the equal densities point.Comment: 19 pages, 6 figures, submitted to J. Phys.

    How do ADHD children perceive their cognitive, affective, and behavioral aspects of anger expression in school setting?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anger is an ignored research area in children and young adolescents with Attention deficit hyperactivity disorder (ADHD) in the school setting. This study compares school anger dimensions in children and young adolescents with ADHD and a control group.</p> <p>Methods</p> <p>The subjects were a clinical sample of 67 children and young adolescents with ADHD and their parents, with a sample of 91 children from the community of similar age and gender as control group. Anger was measured by the Farsi version of the Multidimensional School Anger Inventory (MSAI).</p> <p>Results</p> <p>The scores of the two components of "Hostile Outlook" and "Positive Coping" were different between the groups. The mean scores for the Anger components did not statistically differ between the children with ADHD and ODD and ADHD without ODD, boys and girls, or different types of ADHD.</p> <p>Conclusion</p> <p>Children with ADHD do not report higher rates of experience of anger and they do not apply destructive strategies more than the control group. However, children with ADHD appear to have a more hostile outlook toward school and their coping strategy is weaker than that of the control group.</p
    corecore