1,541 research outputs found

    Magneto-Roton Modes of the Ultra Quantum Crystal: Numerical Study

    Full text link
    The Field Induced Spin Density Wave phases observed in quasi-one-dimensional conductors of the Bechgaard salts family under magnetic field exhibit both Spin Density Wave order and a Quantized Hall Effect, which may exhibit sign reversals. The original nature of the condensed phases is evidenced by the collective mode spectrum. Besides the Goldstone modes, a quasi periodic structure of Magneto-Roton modes, predicted to exist for a monotonic sequence of Hall Quantum numbers, is confirmed, and a second mode is shown to exist within the single particle gap. We present numerical estimates of the Magneto-Roton mode energies in a generic case of the monotonic sequence. The mass anisotropy of the collective mode is calculated. We show how differently the MR spectrum evolves with magnetic field at low and high fields. The collective mode spectrum should have specific features, in the sign reversed "Ribault Phase", as compared to modes of the majority sign phases. We investigate numerically the collective mode in the Ribault Phase.Comment: this paper incorporates material contained in a previous cond-mat preprint cond-mat/9709210, but cannot be described as a replaced version, because it contains a significant amount of new material dealing with the instability line and with the topic of Ribault Phases. It contains 13 figures (.ps files

    Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media

    Full text link
    We demonstrate the existence of stable three-dimensional spatiotemporal solitons (STSs) in media with a nonlocal cubic nonlinearity. Fundamental (nonspinning) STSs forming one-parameter families are stable if their propagation constant exceeds a certain critical value, that is inversely proportional to the range of nonlocality of nonlinear response. All spinning three-dimensional STSs are found to be unstable.Comment: 14 pages, 6 figures, accepted to PRE, Rapid Communication

    Stable three-dimensional spinning optical solitons supported by competing quadratic and cubic nonlinearities

    Full text link
    We show that the quadratic interaction of fundamental and second harmonics in a bulk dispersive medium, combined with self-defocusing cubic nonlinearity, give rise to completely localized spatiotemporal solitons (vortex tori) with vorticity s=1. There is no threshold necessary for the existence of these solitons. They are found to be stable against small perturbations if their energy exceeds a certain critical value, so that the stability domain occupies about 10% of the existence region of the solitons. We also demonstrate that the s=1 solitons are stable against very strong perturbations initially added to them. However, on the contrary to spatial vortex solitons in the same model, the spatiotemporal solitons with s=2 are never stable.Comment: latex text, 10 ps and 2 jpg figures; Physical Review E, in pres

    Soliton excitation in waveguide arrays with an effective intermediate dimensionality

    Full text link
    We reveal and observe experimentally significant modifications undertaken by discrete solitons in waveguide lattices upon the continuous transformation of the lattice structure from one-dimensional to two-dimensional. Light evolution and soliton excitation in arrays with a gradually increasing number of rows are investigated, yielding solitons with an effective reduced dimensionality residing at the edge and in the bulk of the lattice.Comment: 14 pages, 5 figures, to appear in Physical Review Letter

    Nonlinearity-induced broadening of resonances in dynamically modulated couplers

    Full text link
    We report the observation of nonlinearity-induced broadening of resonances in dynamically modulated directional couplers. When the refractive index of the guiding channels in the coupler is harmonically modulated along the propagation direction and out-of-phase in two channels, coupling can be completely inhibited at resonant modulation frequencies. We observe that nonlinearity broadens such resonances and that localization can be achieved even in detuned systems at power levels well below those required in unmodulated couplers.Comment: 14 pages, 4 figures, to appear in Optics Letter

    An alternative search for the electron capture of Te-123

    Full text link
    A search for the electron capture of Te-123 has been performed using CdZnTe detectors. After a measuring time of 195 h no signal could be found resulting in a lower half-life limt of T1/2>3.2â‹…1016T_{1/2} > 3.2 \cdot 10^{16} yrs (95 % CL) for this process. This clearly discriminates between existing experimental results which differ by six orders of magnitude and our data are in strong favour of the result with longer half-lifes.Comment: 2 pages, 2 eps-figures, reanalysis of data set

    Quantum interference from sums over closed paths for electrons on a three-dimensional lattice in a magnetic field: total energy, magnetic moment, and orbital susceptibility

    Full text link
    We study quantum interference effects due to electron motion on a three-dimensional cubic lattice in a continuously-tunable magnetic field of arbitrary orientation and magnitude. These effects arise from the interference between magnetic phase factors associated with different electron closed paths. The sums of these phase factors, called lattice path-integrals, are ``many-loop" generalizations of the standard ``one-loop" Aharonov-Bohm-type argument. Our lattice path integral calculation enables us to obtain various important physical quantities through several different methods. The spirit of our approach follows Feynman's programme: to derive physical quantities in terms of ``sums over paths". From these lattice path-integrals we compute analytically, for several lengths of the electron path, the half-filled Fermi-sea ground-state energy of noninteracting spinless electrons in a cubic lattice. Our results are valid for any strength of the applied magnetic field in any direction. We also study in detail two experimentally important quantities: the magnetic moment and orbital susceptibility at half-filling, as well as the zero-field susceptibility as a function of the Fermi energy.Comment: 14 pages, RevTe
    • …
    corecore