966 research outputs found

    Electron Shock Waves with a Large Current Behind the Shock Front

    Get PDF
    The propagation of breakdown waves in a gas, which is primarily driven by electron gas pressure, is described by a one-dimensional, steady-state, three-component (electrons, ions, and neutral particles) fluid model. We consider the electron gas partial pressure to be much larger than that of the other species and the waves to have a shock front. Our set of equations consists of the equations of conservation of the flux of mass, momentum, and energy coupled with Poisson’s equation. This set of equations is referred to as the electron fluid dynamical equations. In this study we are considering breakdown waves propagating in the opposite direction of the electric field force on electrons (return stroke in lightning) and moving into a neutral medium. For Breakdown waves with a significant current behind the shock front, the set of electron fluid dynamical equations and also the boundary condition on electron temperature need to be modified. For a range of experimentally observed current values and also some larger current values which few experimentalists have been able to observe, we have been able to solve the set of electron fluid dynamical equations through the dynamical transition region of the wave. Some experimentalists have reported the existence of a relationship between return stroke lightning wave speed and current behind the shock front; however, some others are skeptical of the existence of such a relationship. Our solutions to the set of electron fluid dynamical equations within the dynamical transition region of the wave confirm the existence of such a relationship. We will present the method of solution of the set of electron fluid dynamical equations through the dynamical transition region of the wave and also the wave profile for electric field, electron velocity, electron temperature and electron number density, within the dynamical transition region of the wave

    The Evolution of Geotechnical Earthquake Engineering Practice in North America: 1954-1994

    Get PDF
    This paper traces the evolution of geotechnical earthquake engineering practice in North America from 1954 to 1994. The development of the state-of-the-art has been shaped strongly by four areas of practice: assessment of seismic hazard, estimation of liquefaction potential, seismic response analysis of earth structures and seismic safety evaluation and remediation of existing dams with potentially liquefiable zones. Evolution of practice in each of these areas will be traced and the current state-of-the-art evaluated. Present capabilities in practice will be illustrated by examples from the areas of seismic response of dams, liquefaction potential and seismic safety evaluation and remediation of potentially liquefiable embankment dams

    Detection of radio frequency magnetic fields using nonlinear magneto-optical rotation

    Get PDF
    We describe a room-temperature alkali-metal atomic magnetometer for detection of small, high frequency magnetic fields. The magnetometer operates by detecting optical rotation due to the precession of an aligned ground state in the presence of a small oscillating magnetic field. The resonance frequency of the magnetometer can be adjusted to any desired value by tuning the bias magnetic field. We demonstrate a sensitivity of 100 pG/Hz (RMS)100\thinspace{\rm pG/\sqrt{Hz}\thinspace(RMS)} in a 3.5 cm diameter, paraffin coated cell. Based on detection at the photon shot-noise limit, we project a sensitivity of 20 pG/Hz (RMS)20\thinspace{\rm pG/\sqrt{Hz}\thinspace(RMS)}.Comment: 6 pages, 6 figure

    Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range

    Full text link
    Recent work investigating resonant nonlinear magneto-optical rotation (NMOR) related to long-lived (\tau\ts{rel} \sim 1 {\rm s}) ground-state atomic coherences has demonstrated potential magnetometric sensitivities exceeding 10−11G/Hz10^{-11} {\rm G/\sqrt{Hz}} for small (≲1μG\lesssim 1 {\rm \mu G}) magnetic fields. In the present work, NMOR using frequency-modulated light (FM NMOR) is studied in the regime where the longitudinal magnetic field is in the geophysical range (∼500mG\sim 500 {\rm mG}), of particular interest for many applications. In this regime a splitting of the FM NMOR resonance due to the nonlinear Zeeman effect is observed. At sufficiently high light intensities, there is also a splitting of the FM NMOR resonances due to ac Stark shifts induced by the optical field, as well as evidence of alignment-to-orientation conversion type processes. The consequences of these effects for FM-NMOR-based atomic magnetometry in the geophysical field range are considered.Comment: 8 pages, 8 figure

    A strategy for the characterization of minute chromosome rearrangements using multiple color fluorescence in situ hybridization with chromosome-specific DNA libraries and YAC clones

    Get PDF
    The identification of marker chromosomes in clinical and tumor cytogenetics by chromosome banding analysis can create problems. In this study, we present a strategy to define minute chromosomal rearrangements by multicolor fluorescence in situ hybridization (FISH) with whole chromosome painting probes derived from chromosome-specific DNA libraries and Alu-polymerase chain reaction (PCR) products of various region-specific yeast artificial chromosome (YAC) clones. To demonstrate the usefulness of this strategy for the characterization of chromosome rearrangements unidentifiable by banding techniques, an 8p+ marker chromosome with two extra bands present in the karyotype of a child with multiple anomalies, malformations, and severe mental retardation was investigated. A series of seven-color FISH experiments with sets of fluorochrome-labeled DNA library probes from flow-sorted chromosomes demonstrated that the additional segment on 8p+ was derived from chromosome 6. For a more detailed characterization of the marker chromosome, three-color FISH experiments with library probes specific to chromosomes 6 and 8 were performed in combination with newly established telomeric and subtelomeric YAC clones from 6q25, 6p23, and 8p23. These experiments demonstrated a trisomy 6pter6p22 and a monosomy 8pter8p23 in the patient. The present limitations for a broad application of this strategy and its possible improvements are discusse

    Studies of Vibrational Properties in Ga Stabilized d-Pu by Extended X-ray Absorption Fine Structure

    Full text link
    Temperature dependent extended x-ray absorption fine structure (EXAFS) spectra were measured for a 3.3 at% Ga stabilized Pu alloy over the range T= 20 - 300 K at both the Ga K-edge and the Pu L_III-edge. The temperature dependence of the pair-distance distribution widths, \sigma(T) was accurately modeled using a correlated-Debye model for the lattice vibrational properties, suggesting Debye-like behavior in this material. We obtain pair- specific correlated-Debye temperatures, \Theta_cD, of 110.7 +/- 1.7 K and 202.6 +/- 3.7 K, for the Pu-Pu and Ga-Pu pairs, respectively. These results represent the first unambiguous determination of Ga-specific vibrational properties in PuGa alloys, and indicate the Ga-Pu bonds are significantly stronger than the Pu-Pu bonds. This effect has important implications for lattice stabilization mechanisms in these alloys.Comment: 7 pages, 4 figures, Phys. Rev. B in pres
    • …
    corecore