878 research outputs found
Projection-based measurement and identification
A recently developed Projection-based Digital Image Correlation (P-DVC)
method is here extended to 4D (space and time) displacement field measurement
and mechanical identification based on a single radiograph per loading step
instead of volumes as in standard DVC methods. Two levels of data reductions
are exploited, namely, reduction of the data acquisition (and time) by a factor
of 1000 and reduction of the solution space by exploiting model reduction
techniques. The analysis of a complete tensile elastoplastic test composed of
127 loading steps performed in 6 minutes is presented. The 4D displacement
field as well as the elastoplastic constitutive law are identified. Keywords:
Image-based identification, Model reduction, Fast 4D identification, In-situ
tomography measurements. INTRODUCTION Identification and validation of
increasingly complex mechanical models is a major concern in experimental solid
mechanics. The recent developments of computed tomography coupled with in-situ
tests provide extremely rich and non-destructive analyses [1]. In the latter
cases, the sample was imaged inside a tomograph, either with interrupted
mechanical load or with a continuously evolving loading and on-the-fly
acquisitions (as ultra-fast X-ray synchrotron tomography, namely, 20 Hz full
scan acquisition for the study of crack propagation [2]). Visualization of fast
transformations, crack openings, or unsteady behavior become accessible.
Combined with full-field measurements, in-situ tests offer a quantitative basis
for identifying a broad range of mechanical behavior.Comment: SEM 2019, Jun 2019, Reno, United State
Analysis of folylpoly-γ-glutamate synthetase gene expression in human B-precursor ALL and T-lineage ALL cells
BACKGROUND: Expression of folylpoly-γ-glutamate synthetase (FPGS) gene is two- to three-fold higher in B-precursor ALL (Bp- ALL) than in T-lineage ALL (T-ALL) and correlates with intracellular accumulation of methotrexate (MTX) polyglutamates and lymphoblast sensitivity to MTX. In this report, we investigated the molecular regulatory mechanisms directing FPGS gene expression in Bp-ALL and T-ALL cells. METHODS: To determine FPGS transcription rate in Bp-ALL and T-ALL we used nuclear run-on assays. 5'-RACE was used to uncover potential regulatory regions involved in the lineage differences. We developed a luciferase reporter gene assay to investigate FPGS promoter/enhancer activity. To further characterize the FPGS proximal promoter, we determined the role of the putative transcription binding sites NFY and E-box on FPGS expression using luciferase reporter gene assays with substitution mutants and EMSA. RESULTS: FPGS transcription initiation rate was 1.6-fold higher in NALM6 vs. CCRF-CEM cells indicating that differences in transcription rate led to the observed lineage differences in FPGS expression between Bp-ALL and T-ALL blasts. Two major transcripts encoding the mitochondrial/cytosolic and cytosolic isoforms were detected in Bp-ALL (NALM6 and REH) whereas in T-ALL (CCRF-CEM) cells only the mitochondrial/cytosolic transcript was detected. In all DNA fragments examined for promoter/enhancer activity, we measured significantly lower luciferase activity in NALM6 vs. CCRF-CEM cells, suggesting the need for additional yet unidentified regulatory elements in Bp-ALL. Finally, we determined that the putative transcription factor binding site NFY, but not E-box, plays a role in FPGS transcription in both Bp- and T-lineage. CONCLUSION: We demonstrated that the minimal FPGS promoter region previously described in CCRF-CEM is not sufficient to effectively drive FPGS transcription in NALM6 cells, suggesting that different regulatory elements are required for FPGS gene expression in Bp-cells. Our data indicate that the control of FPGS expression in human hematopoietic cells is complex and involves lineage-specific differences in regulatory elements, transcription initiation rates, and mRNA processing. Understanding the lineage-specific mechanisms of FPGS expression should lead to improved therapeutic strategies aimed at overcoming MTX resistance or inducing apoptosis in leukemic cells
Imaging tests in determination of brain death
In this issue, an excellent review is published on the imaging findings in non-neonatal hypoxic-ischemic encephalopathy [1]. The authors also go into detail on imaging “brain death”, an entity that is currently causing debate as far as the imaging approach is concerned. Brain death refers to the irreversible end of all brain activity due to necrosis of neurons. The diagnosis of brain death allows organ donation for transplantation or withdrawal of life support. Legal standard and/or practice guidelines are currently present in most countries. There is uniform agreement on the clinical neurological examination to evaluate absence of brain function. This examination includes the assessment of coma, the absence of brain reflexes, and the assessment of apnea. Some guidelines require a confirmatory test for the diagnosis o
Prophylactic plasma exchange in CD46-associated atypical haemolytic uremic syndrome
Patients with atypical haemolytic uremic syndrome (aHUS) with a mutation in the gene encoding membrane cofactor protein (CD46) are known to have a better prognosis than those with mutations in factor H (CFH) or factor I (CFI), but a small number of the former still proceed to end-stage renal failure. Plasma therapy (PE) is the recommended approach to treat both acute episodes and prevent recurrences in aHUS, but studies have yet to show PE efficacy in aHUS associated with a CD46 mutation. The factors determining failure to treatment are not clear and may be related to the mutation involved or to insufficient treatment. Our experience of PE in a family of three sisters with CFH-associated aHUS suggests that intensive and prophylactic PE allows renal function to be maintained in both native kidneys and allografts. The success of this strategy has led us to use it in all cases of aHUS. Here, we describe the effect of this strategy in a child with aHUS and a CD46 mutation. The initial episode was treated with daily PE, resulting in the recovery of renal function. However, over the next 4 years, there was a progressive decline in renal function to end-stage renal failure, with evidence of an on-going thrombotic microangiopathy despite continuous prophylactic PE. Prophylactic PE does not influence the natural course of aHUS and CD46 mutation
Plasma therapy in atypical haemolytic uremic syndrome: lessons from a family with a factor H mutation
Whilst randomised control trials are undoubtedly the best way to demonstrate whether plasma exchange or infusion alone is the best first-line treatment for patients with atypical haemolytic uremic syndrome (aHUS), individual case reports can provide valuable information. To that effect, we have had the unique opportunity to follow over a 10-year period three sisters with aHUS associated with a factor H mutation (CFH). Two of the sisters are monozygotic twins. A similar natural evolution and response to treatment would be expected for the three patients, as they all presented with the same at-risk polymorphisms for CFH and CD46 and no identifiable mutation in either CD46 or CFI. Our report of different modalities of treatment of the initial episode and of three transplantations and relapses in the transplant in two of them, strongly suggest that intensive plasma exchange, both acutely and prophylactically, can maintain the long-term function of both native kidneys and allografts. In our experience, the success of plasma therapy is dependent on the use of plasma exchange as opposed to plasma infusion alone, the prolongation of daily plasma exchange after normalisation of haematological parameters followed by prophylactic plasma exchange, the use of prophylactic plasma exchange prior to transplantation and the use of prophylactic plasma exchange at least once a week posttransplant with immediate intensification of treatment if there are any signs of recurrence
Use of Combined Hartree-Fock-Roothaan Theory in Evaluation of Lowest States of K [Ar]4s^0 3d^1 and Cr+ [Ar]4s^0 3d^5 Isoelectronic Series Over Noninteger n-Slater Type Orbitals
By the use of integer and noninteger n-Slater Type Orbitals in combined
Hartree-Fock-Roothaan method, self consistent field calculations of orbital and
lowest states energies have been performed for the isoelectronic series of open
shell systems K [Ar]4s^0 3d^1 2(D) (Z=19-30) and Cr+ [Ar] 4s^0 3d^5 6(S)
(Z=24-30). The results of calculations for the orbital and total energies
obtained from the use of minimal basis sets of integer- and noninteger n-Slater
Type Orbitals are given in tables. The results are compared with the
extended-basis Hartree-Fock computations. The orbital and total energies are in
good agreement with those presented in the literature. The results are
accurately and considerably can be useful in the application of
non-relativistic and relativistic combined Hartree-Fock-Roothaan approach for
heavy atomic systems.Comment: 11 pages, 6 tables, 2 figures. submitte
Ecological association between a deprivation index and mortality in France over the period 1997 – 2001: variations with spatial scale, degree of urbanicity, age, gender and cause of death
<p>Abstract</p> <p>Background</p> <p>Spatial health inequalities have often been analysed in terms of deprivation. The aim of this study was to create an ecological deprivation index and evaluate its association with mortality over the entire mainland France territory. More specifically, the variations with the degree of urbanicity, spatial scale, age, gender and cause of death, which influence the association between mortality and deprivation, have been described.</p> <p>Methods</p> <p>The deprivation index, 'FDep99', was developed at the '<it>commune</it>'(smallest administrative unit in France) level as the first component of a principal component analysis of four socioeconomic variables.</p> <p>Proxies of the Carstairs and Townsend indices were calculated for comparison.</p> <p>The spatial association between FDep99 and mortality was studied using five different spatial scales, and by degree of urbanicity (five urban unit categories), age, gender and cause of death, over the period 1997–2001.</p> <p>'Avoidable' causes of death were also considered for subjects aged less than 65 years. They were defined as causes related to risk behaviour and primary prevention (alcohol, smoking, accidents).</p> <p>Results</p> <p>The association between the FDep99 index and mortality was positive and quasi-log-linear, for all geographic scales. The standardized mortality ratio (SMR) was 24% higher for the <it>communes </it>of the most deprived quintile than for those of the least deprived quintile. The between-urban unit category and between-<it>région </it>heterogeneities of the log-linear associations were not statistically significant. The association was positive for all the categories studied and was significantly greater for subjects aged less than 65 years, for men, and for 'avoidable' mortality.</p> <p>The amplitude and regularity of the associations between mortality and the Townsend and Carstairs indices were lower.</p> <p>Conclusion</p> <p>The deprivation index proposed reflects a major part of spatial socioeconomic heterogeneity, in a homogeneous manner over the whole country. The index may be routinely used by healthcare authorities to observe, analyse, and manage spatial health inequalities.</p
Atypical hemolytic uremic syndrome in children: complement mutations and clinical characteristics
Item does not contain fulltextBACKGROUND: Mutations in complement factor H (CFH), factor I (CFI), factor B (CFB), thrombomodulin (THBD), C3 and membrane cofactor protein (MCP), and autoantibodies against factor H (alphaFH) with or without a homozygous deletion in CFH-related protein 1 and 3 (CFHR1/3) predispose development of atypical hemolytic uremic syndrome (aHUS). METHODS: Different mutations in genes encoding complement proteins in 45 pediatric aHUS patients were retrospectively linked with clinical features, treatment, and outcome. RESULTS: In 47% of the study participants, potentially pathogenic genetic anomalies were found (5xCFH, 4xMCP, and 4xC3, 3xCFI, 2xCFB, 6xalphaFH, of which five had CFHR1/3); four patients carried combined genetic defects or a mutation, together with alphaFH. In the majority (87%), disease onset was preceeded by a triggering event; in 25% of cases diarrhea was the presenting symptom. More than 50% had normal serum C3 levels at presentation. Relapses were seen in half of the patients, and there was renal graft failure in all except one case following transplant. CONCLUSIONS: Performing adequate DNA analysis is essential for treatment and positive outcome in children with aHUS. The impact of intensive initial therapy and renal replacement therapy, as well as the high risk of recurrence of aHUS in renal transplant, warrants further understanding of the pathogenesis, which will lead to better treatment options.01 augustus 201
Improvement of the Trivalent Inactivated Flu Vaccine Using PapMV Nanoparticles
Commercial seasonal flu vaccines induce production of antibodies directed mostly towards hemaglutinin (HA). Because HA changes rapidly in the circulating virus, the protection remains partial. Several conserved viral proteins, e.g., nucleocapsid (NP) and matrix proteins (M1), are present in the vaccine, but are not immunogenic. To improve the protection provided by these vaccines, we used nanoparticles made of the coat protein of a plant virus (papaya mosaic virus; PapMV) as an adjuvant. Immunization of mice and ferrets with the adjuvanted formulation increased the magnitude and breadth of the humoral response to NP and to highly conserved regions of HA. They also triggered a cellular mediated immune response to NP and M1, and long-lasting protection in animals challenged with a heterosubtypic influenza strain (WSN/33). Thus, seasonal flu vaccine adjuvanted with PapMV nanoparticles can induce universal protection to influenza, which is a major advancement when facing a pandemic
- …