371 research outputs found
Comparison of Staggered Grid Finite Difference Schemes for Ultrasound Simulation in Curving Composites
The optimization of ultrasonic nondestructive evaluation (NDE) simulation tools for composites has the potential to reduce both individual part inspection time and overall certification time for composite parts and structures. Inspection guidance based on simulation provides increased confidence in the veracity of inspection results in addition to time reductions. This paper outlines ongoing work targeted to advance this objective through the use of finite difference (FD) simulation techniques formulated for composite structures with realistic geometries. Two staggered grid explicit FD schemes which show promise for this purpose are assessed: the Lebedev FD scheme and the rotated staggered grid (RSG) FD scheme. Algorithmic points which provide challenges for complex geometries are addressed, in particular handling of traction free surfaces and bi-material interfaces present at lamina boundaries. Code execution time estimates are performed as well to guide feasible domain sizes relative to algorithm choice and available hardware. Three test cases are simulated: a delaminated plate, a cylinder, and a triclinic lamina. These tests demonstrate that the Lebedev FD scheme needs additional work to handle inter-laminar interfaces and traction free boundaries in the presence of stair-stepping approximations. In contrast, the simple structure of the RSG unit cell makes it more straightforward to construct a 3D simulation technique for curved composite laminates
3D Modeling of Ultrasonic Wave Interaction with Disbonds and Weak Bonds
Ultrasonic techniques, such as the use of guided waves, can be ideal for finding damage in the plate and pipe-like structures used in aerospace applications. However, the interaction of waves with real flaw types and geometries can lead to experimental signals that are difficult to interpret. 3-dimensional (3D) elastic wave simulations can be a powerful tool in understanding the complicated wave scattering involved in flaw detection and for optimizing experimental techniques. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate Lamb wave scattering from realistic flaws. This paper discusses simulation results for an aluminum-aluminum diffusion disbond and an aluminum-epoxy disbond and compares results from the disbond case to the common artificial flaw type of a flat-bottom hole. The paper also discusses the potential for extending the 3D EFIT equations to incorporate physics-based weak bond models for simulating wave scattering from weak adhesive bonds
Computational Modeling of Micro-Crack Induced Attenuation in CFRP Composites
A computational study is performed to determine the contribution to ultrasound attenuation in carbon fiber reinforced polymer composite laminates of linear elastic scattering by matrix micro-cracking. Multiple scattering approximations are benchmarked against exact computational approaches. Results support linear scattering as the source of observed increased attenuation in the presence of micro-cracking
Detection of Manufacturing Defects via Wavefield Image Processing Techniques: An Experimental Study
Defects that occur during the manufacturing of a composite can have drastic effects on the intended strength or durability of composite structures. These defects include gaps and overlaps in the prepreg tow-tape that can occur during Automated Fiber Placement (AFP) system operations, as well as unintended fiber waviness caused by differential thermal loading during curing cycles. Wavefield imaging offers a non-contact method of detecting various anomalies in composites, and emerging technologies can enable rapid wavefield acquisition. In this work, composite samples were created with intentional and analogous manufacturing defects such as the ones mentioned, and full guided wavefield data was captured using a Laser Doppler Vibrometer (LDV) while guided waves were excited in the sample. Studies of the data were performed using wavenumber analysis methods, such as Multi-Frequency Local Wavenumber Technique which has been used to detect delamination in composites. Other wavenumber analysis methodologies were developed guided by finite-difference simulation results. The results of these wavenumber analysis methods will be presented, as well as a brief discussion of the defect simulations
Lebedev Scheme for Ultrasound Simulation in Composites
The growing use of composite materials for aerospace applications has resulted in a need for quantitative nondestructive evaluation (NDE) methods appropriate for characterizing damage in composite components. NDE simulation tools, such as ultrasound models, can aid in enabling optimized inspection methods and establishing confidence in inspection capabilities. In this paper, a mathematical approach using the Lebedev Finite Difference (LFD) method is presented for ultrasonic wave simulation in composites. Boundary condition equations for implementing stress-free boundaries (necessary for simulation of NDE scenarios) are also presented. Quantitative comparisons between LFD guided wave ultrasound simulation results, experimental guided wave data, and dispersion curves are described. Additionally, stability tests are performed to establish the LFD code behavior in the presence of stress-free boundaries and low-symmetry anisotropy. Results show that LFD is an appropriate approach for simulating ultrasound in anisotropic composite materials and that the method is stable in the presence of low-symmetry anisotropy and stress-free boundaries. Studies presented in this paper include guided wave simulation in hexagonal, monoclinic, triclinic and layered composite laminates
NDE and SHM Simulation for CFRP Composites
Ultrasound-based nondestructive evaluation (NDE) is a common technique for damage detection in composite materials. There is a need for advanced NDE that goes beyond damage detection to damage quantification and characterization in order to enable data driven prognostics. The damage types that exist in carbon fiber-reinforced polymer (CFRP) composites include microcracking and delaminations, and can be initiated and grown via impact forces (due to ground vehicles, tool drops, bird strikes, etc), fatigue, and extreme environmental changes. X-ray microfocus computed tomography data, among other methods, have shown that these damage types often result in voids/discontinuities of a complex volumetric shape. The specific damage geometry and location within ply layers affect damage growth. Realistic threedimensional NDE and structural health monitoring (SHM) simulations can aid in the development and optimization of damage quantification and characterization techniques. This paper is an overview of ongoing work towards realistic NDE and SHM simulation tools for composites, and also discusses NASA's need for such simulation tools in aeronautics and spaceflight. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with realistic 3-dimensional damage in CFRP composites. The custom code uses elastodynamic finite integration technique and is parallelized to run efficiently on computing cluster or multicore machines
Microcracking in Composite Laminates: Simulation of Crack-Induced Ultrasound Attenuation
Microcracking in composite laminates is a known precursor to the growth of inter-ply delaminations and larger scale damage. Microcracking can lead to the attenuation of ultrasonic waves due to the crack-induced scattering. 3D elastodynamic finite integration technique (EFIT) has been implemented to explore the scattering of ultrasonic waves due to microcracks in anisotropic composite laminates. X-ray microfocus computed tomography data was directly input into the EFIT simulation for these purposes. The validated anisotropic 3D EFIT code is shown to be a useful tool for exploring the complex multiple-scattering which arises from extensive microcracking
Instantaneous Wavenumber Estimation for Damage Quantification in Layered Plate Structures
This paper illustrates the application of instantaneous and local wavenumber damage quantification techniques for high frequency guided wave interrogation. The proposed methodologies can be considered as first steps towards a hybrid structural health monitoring/ nondestructive evaluation (SHM/NDE) approach for damage assessment in composites. The challenges and opportunities related to the considered type of interrogation and signal processing are explored through the analysis of numerical data obtained via EFIT simulations of damage in CRFP plates. Realistic damage configurations are modeled from x-ray CT scan data of plates subjected to actual impacts, in order to accurately predict wave-damage interactions in terms of scattering and mode conversions. Simulation data is utilized to enhance the information provided by instantaneous and local wavenumbers and mitigate the complexity related to the multi-modal content of the plate response. Signal processing strategies considered for this purpose include modal decoupling through filtering in the frequency/wavenumber domain, the combination of displacement components, and the exploitation of polarization information for the various modes as evaluated through the dispersion analysis of the considered laminate lay-up sequence. The results presented assess the effectiveness of the proposed wavefield processing techniques as a hybrid SHM/NDE technique for damage detection and quantification in composite, plate-like structures
Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves
This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures
Plasma REST: a novel candidate biomarker of Alzheimer's disease is modified by psychological intervention in an at-risk population.
The repressor element 1-silencing transcription (REST) factor is a key regulator of the aging brain's stress response. It is reduced in conditions of stress and Alzheimer's disease (AD), which suggests that increasing REST may be neuroprotective. REST can be measured peripherally in blood plasma. Our study aimed to (1) examine plasma REST levels in relation to clinical and biological markers of neurodegeneration and (2) alter plasma REST levels through a stress-reduction intervention-mindfulness training. In study 1, REST levels were compared across the following four well-characterized groups: healthy elderly (n=65), mild cognitive impairment who remained stable (stable MCI, n=36), MCI who later converted to dementia (converter MCI, n=29) and AD (n=65) from the AddNeuroMed cohort. REST levels declined with increasing severity of risk and impairment (healthy elderly>stable MCI>converter MCI>AD, F=6.35, P<0.001). REST levels were also positively associated with magnetic resonance imaging-based hippocampal and entorhinal atrophy and other putative blood-based biomarkers of AD (Ps<0.05). In study 2, REST was measured in 81 older adults with psychiatric risk factors for AD before and after a mindfulness-based stress reduction intervention or an education-based placebo intervention. Mindfulness-based training caused an increase in REST compared with the placebo intervention (F=8.57, P=0.006), and increased REST was associated with a reduction in psychiatric symptoms associated with stress and AD risk (Ps<0.02). Our data confirm plasma REST associations with clinical severity and neurodegeneration, and originally, that REST is modifiable by a psychological intervention with clinical benefit
- …