21 research outputs found

    Scalar-tensor analysis of an exponential Lagrangian for the Gravitational Field

    Full text link
    Within the scheme of modified gravity, an exponential Lagrangian density will be considered, and the corresponding scalar-tensor description will be addressed for both positive and negative values of the cosmological constant. For negative values of the cosmological term, the potential of the scalar field exhibits a minimum, around which scalar-field equations can be linearized. The study of the deSitter regime shows that a comparison with the modified-gravity description is possible in an off-shell region, i.e., in a region where the classical equivalence between the two formulations is not fulfilled. Furthermore, despite the negative cosmological constant, an accelerating deSitter phase is predicted in the region where the series expansion of the exponential term does not hold. For positive values of the cosmological constant, the quantum regime is analyzed within the framework of Loop Quantum Cosmology.Comment: 8 pages, 2 figures, to appear in the proceedings of'' 4th Italian-Sino Workshop on Relativistic Astrophysics'', AIP Conference Serie

    Fermion Dynamics by Internal and Space-Time Symmetries

    Full text link
    This manuscript is devoted to introduce a gauge theory of the Lorentz Group based on the ambiguity emerging in dealing with isometric diffeo-morphism-induced Lorentz transformations. The behaviors under local transformations of fermion fields and spin connections (assumed to be ordinary world vectors) are analyzed in flat space-time and the role of the torsion field, within the generalization to curved space-time, is briefly discussed. The fermion dynamics is then analyzed including the new gauge fields and assuming time-gauge. Stationary solutions of the problem are also analyzed in the non-relativistic limit, to study the spinor structure of an hydrogen-like atom.Comment: 10 pages, no figur

    Non-analytical power law correction to the Einstein-Hilbert action: gravitational wave propagation

    Full text link
    We analyze the features of the Minkowskian limit of a particular non-analytical f(R) model, whose Taylor expansion in the weak field limit does not hold, as far as gravitational waves (GWs) are concerned. We solve the corresponding Einstein equations and we find an explicit expression of the modified GWs as the sum of two terms, i.e. the standard one and a modified part. As a result, GWs in this model are not transverse, and their polarization is different from that of General Relativity. The velocity of the GW modified part depends crucially on the parameters characterizing the model, and it mostly results much smaller than the speed of light. Moreover, this investigation allows one to further test the viability of this particular f(R) gravity theory as far as interferometric observations of GWs are concerned.Comment: 18 pages, 3 figure

    The picture of the Bianchi I model via gauge fixing in Loop Quantum Gravity

    Full text link
    The implications of the SU(2) gauge fixing associated with the choice of invariant triads in Loop Quantum Cosmology are discussed for a Bianchi I model. In particular, via the analysis of Dirac brackets, it is outlined how the holonomy-flux algebra coincides with the one of Loop Quantum Gravity if paths are parallel to fiducial vectors only. This way the quantization procedure for the Bianchi I model is performed by applying the techniques developed in Loop Quantum Gravity but restricting the admissible paths. Furthermore, the local character retained by the reduced variables provides a relic diffeomorphisms constraint, whose imposition implies homogeneity on a quantum level. The resulting picture for the fundamental spatial manifold is that of a cubical knot with attached SU(2) irreducible representations. The discretization of geometric operators is outlined and a new perspective for the super-Hamiltonian regularization in Loop Quantum Cosmology is proposed.Comment: 6 page
    corecore