2 research outputs found

    Efficient AID targeting of switch regions is not sufficient for optimal class switch recombination.

    No full text
    International audienceAntibody affinity maturation relies on activation-induced cytidine deaminase (AID)-dependent somatic hypermutation (SHM) of immunoglobulin (Ig) loci. Class switch recombination (CSR) can in parallel occur between AID-targeted, transcribed, spliced and repetitive switch (S) regions. AID thus initiates not only mutations but also double-strand breaks (DSBs). What governs the choice between those two outcomes remains uncertain. Here we explore whether insertion of transcribed intronic S regions in a locus (Igκ) strongly recruiting AID is sufficient for efficient CSR. Although strongly targeted by AID and carrying internal deletions, the knocked-in S regions only undergo rare CSR-like events. This model confirms S regions as exquisite SHM targets, extending AID activity far from transcription initiation sites, and shows that such spliced and repetitive AID targets are not sufficient by themselves for CSR. Beyond transcription and AID recruitment, additional IgH elements are thus needed for CSR, restricting this hazardous gene remodelling to IgH loci

    Multiple RNA surveillance mechanisms cooperate to reduce the amount of nonfunctional Ig kappa transcripts.

    No full text
    International audienceRandom V(D)J junctions ensure that the diversity of the Ig primary repertoire is adapted to the vast heterogeneity of Ags. In two-thirds of cases, recombination between variable segments induces a frameshift in the open reading frame and generates a premature termination codon. In B cells harboring biallelic V(D)J rearrangement of Ig genes, transcription is known to occur on both the functional and nonfunctional alleles, generating considerable amounts of primary transcripts with out-of-frame V regions. In this study, we analyzed in cell lines and primary B cells the RNA surveillance of nonfunctional Igkappa transcripts arising from nonproductive rearrangement. We demonstrated that splicing inhibition, nonsense-mediated decay and nonsense-altered splicing each have an individual partial effect that together associate into an efficient surveillance machinery, downregulating nonfunctional Igkappa mRNA. Moreover, we provide evidence that the RNA surveillance efficiency increases throughout B cell development. Whereas splicing inhibition remains constant in most cell lines, differences in nonsense-mediated decay and nonsense-altered splicing are responsible for the higher RNA surveillance observed in plasma cells. Altogether, these data show that nonfunctionally rearranged alleles are subjected to active transcription but that multiple RNA surveillance mechanisms eradicate up to 90% of out-of-frame Igkappa mRNA
    corecore