49 research outputs found

    Exosomal non-coding RNAs in glioma progression: insights into tumor microenvironment dynamics and therapeutic implications

    Get PDF
    Gliomas are the most common and deadly types of brain tumors, known for their extensive genetic and epigenetic variability, which poses considerable challenges for pharmacological treatment. Glioma heterogeneity is also related to their intricate and dynamic tumor microenvironment (TME), which comprises a diverse array of cell types, including immune cells, vascular cells, glial cells, and neural precursors, collectively influencing tumor behavior and progression. A pivotal aspect of this intercellular communication relies on the exchange of extracellular vesicles (EVs), which contain and transfer complex molecular cargoes typical of their cells of origin, such as proteins, lipids, carbohydrates, metabolites, and non-coding RNAs (ncRNAs), that encompass microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Glioma cells actively release EVs loaded with specific ncRNAs that can target genes and other ncRNAs in recipient cells residing within the TME. Among these recipient cells, prominent players include tumor-associated macrophages and microglia (TAMs), non-neoplastic astrocytes and endothelial cells. The intricate interplay between EVs derived from glioma cells and these recipient cells significantly contributes to the establishment of a tumor-permissive microenvironment, promoting tumor cell proliferation, migration, angiogenesis, and invasion, by targeting various downstream pathways. This review critically examines the current understanding of the intricate interplay between glioma, exosomal ncRNAs, and various components of the glioma TME. By shedding light on the roles of ncRNAs in mediating intercellular communication, this review underscores their significance in orchestrating TME transformation and highlights their potential as novel therapeutic targets for effectively tackling glioma progression

    The ubiquitin ligase Mdm2 controls oligodendrocyte maturation by intertwining mTOR with G protein-coupled receptor kinase 2 in the regulation of GPR17 receptor desensitization

    Get PDF
    During oligodendrocyte precursor cell (OPC) differentiation, defective control of the membrane receptor GPR17 has been suggested to block cell maturation and impair remyelination under demyelinating conditions. After the immature oligodendrocyte stage, to enable cells to complete maturation, GPR17 is physiologically down-regulated via phosphorylation/desensitization by G protein-coupled receptor kinases (GRKs); conversely, GRKs are regulated by the "mammalian target of rapamycin" mTOR. However, how GRKs and mTOR are connected to each other in modulating GPR17 function and oligodendrogenesis has remained elusive. Here we show, for the first time, a role for Murine double minute 2 (Mdm2), a ligase previously involved in ubiquitination/degradation of the onco-suppressor p53 protein. In maturing OPCs, both rapamycin and Nutlin-3, a small molecule inhibitor of Mdm2-p53 interactions, increased GRK2 sequestration by Mdm2, leading to impaired GPR17 down-regulation and OPC maturation block. Thus, Mdm2 intertwines mTOR with GRK2 in regulating GPR17 and oligodendrogenesis and represents a novel actor in myelination

    Quality of life in carotid atherosclerosis: The role of co-morbid mood disorders

    Get PDF
    Introduction/Objective: To study in severe carotid atherosclerosis (CA): The frequency of mood disorders (MD); the impairment of quality of life (QoL); the role of co-morbid MD in such impairment. Methods: Case-control study. Cases: consecutive in-patients with CA (stenosis ≥ 50%). Controls: subjects with no diagnosis of CA randomized from a database of a community survey. Psychiatric diagnosis according to DSM-IV made by clinicians and semi-structured interview, QoL measured by the Short Form Health Survey (SF-12). Results: This is the first study on comorbidity on CA disease and MD in which psychiatric diagnoses are conducted by clinicians according to DSM-IV diagnostic criteria. Major Depressive Disorder (MDD) (17.4% vs 2.72%, P <0.0001) but not Bipolar Disorders (BD) (4.3% vs 0.5%, P = 0.99) was higher in cases (N=46) than in controls (N= 184). SF-12 scores in cases were lower than in controls (30.56±8.12 vs 36.81±6:40; p <0.001) with QoL comparable to serious chronic diseases of the central nervous system. The burden of a concomitant MDD or BD amplifies QoL impairment. Conclusion: Comorbid MD aggravates the impairment of QoL in CA. Unlike autoimmune diseases or degenerative diseases of the Central Nervous System, CA shows a strong risk of MDD than BD

    P2Y receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    P2Y receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on P2Y Receptors [3, 5]) are activated by the endogenous ligands ATP, ADP, uridine triphosphate, uridine diphosphate and UDP-glucose. The relationship of many of the cloned receptors to endogenously expressed receptors is not yet established and so it might be appropriate to use wording such as 'uridine triphosphate-preferring (or ATP-, etc.) P2Y receptor' or 'P2Y1-like', etc., until further, as yet undefined, corroborative criteria can be applied [46, 109, 187, 375, 388].Clinically used drugs acting on these receptors include the dinucleoside polyphosphate diquafosol, agonist of the P2Y2 receptor subtype, approved in Japan for the management of dry eye disease [236], and the P2Y12 receptor antagonists prasugrel, ticagrelor and cangrelor, all approved as antiplatelet drugs [52, 316]

    P2Y receptors in GtoPdb v.2023.1

    Get PDF
    P2Y receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on P2Y Receptors [3, 5, 189]) are activated by the endogenous ligands ATP, ADP, UTP, UDP, UDP-glucose and adenosine. The eight mammalian P2Y receptors are activated by distinct nucleotides: P2Y1, P2Y11, P2Y12 and P2Y13 are activated by adenosine-nucleotides; P2Y2, P2Y4 can be activated by both adenosine and uridine nucleotides, with some species-specific differences; P2Y6 is mainly activated by UDP; P2Y14 is preferentially activated by sugar-uracil nucleotides. The missing numbers in the receptor nomenclature refer either to non-mammalian orthologs or receptors having some sequence homology to P2Y receptors but for which there is no functional evidence of responsiveness to nucleotides [380]. Based on their G protein coupling P2Y receptors can be divided into two subfamilies: P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11 receptors couple via Gq proteins to stimulate phospholipase C followed by increases in inositol phosphates and mobilization of Ca2+ from intracellular stores. P2Y11 receptors couple in addition to Gs proteins followed by increased adenylate cyclase activity. In contrast, P2Y12, P2Y13, and P2Y14 receptors signal primarily through activation of Gi proteins and inhibition of adenylate cyclase activity or control of ion channel activity [380]. Clinically used drugs acting on these receptors include the dinucleoside polyphosphate diquafosol, agonist of the P2Y2 receptor subtype, approved in Japan and South Korea for the management of dry eye disease [238], and the P2Y12 receptor antagonists prasugrel, ticagrelor and cangrelor, all approved as antiplatelet drugs [52, 320]

    P2Y receptors in GtoPdb v.2021.3

    Get PDF
    P2Y receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on P2Y Receptors [3, 5, 192]) are activated by the endogenous ligands ATP, ADP, uridine triphosphate, uridine diphosphate and UDP-glucose. The relationship of many of the cloned receptors to endogenously expressed receptors is not yet established and so it might be appropriate to use wording such as 'uridine triphosphate-preferring (or ATP-, etc.) P2Y receptor' or 'P2Y1-like', etc., until further, as yet undefined, corroborative criteria can be applied [47, 110, 190, 383, 396]. Clinically used drugs acting on these receptors include the dinucleoside polyphosphate diquafosol, agonist of the P2Y2 receptor subtype, approved in Japan for the management of dry eye disease [241], and the P2Y12 receptor antagonists prasugrel, ticagrelor and cangrelor, all approved as antiplatelet drugs [53, 323]

    A review of the main genetic factors influencing the course of COVID-19 in Sardinia: the role of human leukocyte antigen-G

    Get PDF
    Introduction: A large number of risk and protective factors have been identified during the SARS-CoV-2 pandemic which may influence the outcome of COVID-19. Among these, recent studies have explored the role of HLA-G molecules and their immunomodulatory effects in COVID-19, but there are very few reports exploring the genetic basis of these manifestations. The present study aims to investigate how host genetic factors, including HLA-G gene polymorphisms and sHLA-G, can affect SARS-CoV-2 infection. Materials and Methods: We compared the immune-genetic and phenotypic characteristics between COVID-19 patients (n = 381) with varying degrees of severity of the disease and 420 healthy controls from Sardinia (Italy). Results: HLA-G locus analysis showed that the extended haplotype HLA-G*01:01:01:01/UTR-1 was more prevalent in both COVID-19 patients and controls. In particular, this extended haplotype was more common among patients with mild symptoms than those with severe symptoms [22.7% vs 15.7%, OR = 0.634 (95% CI 0.440 – 0.913); P = 0.016]. Furthermore, the most significant HLA-G 3’UTR polymorphism (rs371194629) shows that the HLA-G 3’UTR Del/Del genotype frequency decreases gradually from 27.6% in paucisymptomatic patients to 15.9% in patients with severe symptoms (X2 = 7.095, P = 0.029), reaching the lowest frequency (7.0%) in ICU patients (X2 = 11.257, P = 0.004). However, no significant differences were observed for the soluble HLA-G levels in patients and controls. Finally, we showed that SARS-CoV-2 infection in the Sardinian population is also influenced by other genetic factors such as β-thalassemia trait (rs11549407C&gt;T in the HBB gene), KIR2DS2/HLA-C C1+ group combination and the HLA-B*58:01, C*07:01, DRB1*03:01 haplotype which exert a protective effect [P = 0.005, P = 0.001 and P = 0.026 respectively]. Conversely, the Neanderthal LZTFL1 gene variant (rs35044562A&gt;G) shows a detrimental consequence on the disease course [P = 0.001]. However, by using a logistic regression model, HLA-G 3’UTR Del/Del genotype was independent from the other significant variables [ORM = 0.4 (95% CI 0.2 – 0.7), PM = 6.5 x 10-4]. Conclusion: Our results reveal novel genetic variants which could potentially serve as biomarkers for disease prognosis and treatment, highlighting the importance of considering genetic factors in the management of COVID-19 patients
    corecore