4,915 research outputs found

    An Estimate of the Spectral Intensity Expected from the Molecular Bremsstrahlung Radiation in Extensive Air Showers

    Full text link
    A detection technique of ultra-high energy cosmic rays, complementary to the fluorescence technique, would be the use of the molecular Bremsstrahlung radiation emitted by low-energy electrons left after the passage of the showers in the atmosphere. The emission mechanism is expected from quasi-elastic collisions of electrons produced in the shower by the ionisation of the molecules in the atmosphere. In this article, a detailed calculation of the spectral intensity of photons at ground level originating from the transitions between unquantised energy states of free ionisation electrons is presented. In the absence of absorption of the emitted photons in the plasma, the obtained spectral intensity is shown to be 5 10^{-26} W m^{-2}Hz^{-1} at 10 km from the shower core for a vertical shower induced by a proton of 10^{17.5} eV.Comment: 16 pages, 6 figures, accepted in Astroparticle Physics. Compared to v1 version: 1. Inclusion of ro-vibrational processes. 2. Use of more accurate ionization potential values and energy distribution of the secondary electron

    Open TURNS: An industrial software for uncertainty quantification in simulation

    Full text link
    The needs to assess robust performances for complex systems and to answer tighter regulatory processes (security, safety, environmental control, and health impacts, etc.) have led to the emergence of a new industrial simulation challenge: to take uncertainties into account when dealing with complex numerical simulation frameworks. Therefore, a generic methodology has emerged from the joint effort of several industrial companies and academic institutions. EDF R&D, Airbus Group and Phimeca Engineering started a collaboration at the beginning of 2005, joined by IMACS in 2014, for the development of an Open Source software platform dedicated to uncertainty propagation by probabilistic methods, named OpenTURNS for Open source Treatment of Uncertainty, Risk 'N Statistics. OpenTURNS addresses the specific industrial challenges attached to uncertainties, which are transparency, genericity, modularity and multi-accessibility. This paper focuses on OpenTURNS and presents its main features: openTURNS is an open source software under the LGPL license, that presents itself as a C++ library and a Python TUI, and which works under Linux and Windows environment. All the methodological tools are described in the different sections of this paper: uncertainty quantification, uncertainty propagation, sensitivity analysis and metamodeling. A section also explains the generic wrappers way to link openTURNS to any external code. The paper illustrates as much as possible the methodological tools on an educational example that simulates the height of a river and compares it to the height of a dyke that protects industrial facilities. At last, it gives an overview of the main developments planned for the next few years

    Deformation of LeBrun's ALE metrics with negative mass

    Full text link
    In this article we investigate deformations of a scalar-flat K\"ahler metric on the total space of complex line bundles over CP^1 constructed by C. LeBrun. In particular, we find that the metric is included in a one-dimensional family of such metrics on the four-manifold, where the complex structure in the deformation is not the standard one.Comment: 20 pages, no figure. V2: added two references, filled a gap in the proof of Theorem 1.2. V3: corrected a wrong statement about Kuranishi family of a Hirzebruch surface stated in the last paragraph in the proof of Theorem 1.2, and fixed a relevant error in the proof. Also added a reference [24] about Kuranishi family of Hirzebruch surface

    Einstein metrics and the number of smooth structures on a four-manifold

    Get PDF
    We prove that for every natural number k there are simply connected topological four-manifolds which have at leat k distinct smooth structures supporting Einstein metrics, and also have infinitely many distinct smooth structures not supporting Einstein metrics. Moreover, all these smooth structures become diffeomorphic after connected sum with only one copy of the complex projective plane. We prove that manifolds with these properties cover a large geographical area.Comment: 23 page

    Applications of the Ashtekar gravity to four dimensional hyperk\"ahler geometry and Yang-Mills Instantons

    Get PDF
    The Ashtekar-Mason-Newman equations are used to construct the hyperk\"ahler metrics on four dimensional manifolds. These equations are closely related to anti self-dual Yang-Mills equations of the infinite dimensional gauge Lie algebras of all volume preserving vector fields. Several examples of hyperk\"ahler metrics are presented through the reductions of anti self-dual connections. For any gauge group anti self-dual connections on hyperk\"ahler manifolds are constructed using the solutions of both Nahm and Laplace equations.Comment: 9pages, Figures are not include

    The CLIC Programme: Towards a Staged e+e- Linear Collider Exploring the Terascale : CLIC Conceptual Design Report

    Full text link
    This report describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale e+e- linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technology. A high-luminosity high-energy e+e- collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a 125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear e+e- collider built and operated in centre-of-mass energy stages from a few-hundred GeV up to a few TeV will be an ideal physics exploration tool, complementing the LHC. In this document, an overview of the physics potential of CLIC is given. Two example scenarios are presented for a CLIC accelerator built in three main stages of 500 GeV, 1.4 (1.5) TeV, and 3 TeV, together with operating schemes that will make full use of the machine capacity to explore the physics. The accelerator design, construction, and performance are presented, as well as the layout and performance of the experiments. The proposed staging example is accompanied by cost estimates of the accelerator and detectors and by estimates of operating parameters, such as power consumption. The resulting physics potential and measurement precisions are illustrated through detector simulations under realistic beam conditions.Comment: 84 pages, published as CERN Yellow Report https://cdsweb.cern.ch/record/147522
    • …
    corecore