5,365 research outputs found

    Degenerations of LeBrun twistor spaces

    Full text link
    We investigate various limits of the twistor spaces associated to the self-dual metrics on n CP ^2, the connected sum of the complex projective planes, constructed by C. LeBrun. In particular, we explicitly present the following 3 kinds of degenerations whose limits of the metrics are: (a) LeBrun metrics on (n-1) CP ^2$, (b) (Another) LeBrun metrics on the total space of the line bundle O(-n) over CP ^1 (c) The hyper-Kaehler metrics on the small resolution of rational double points of type A_{n-1}, constructed by Gibbons and Hawking.Comment: 21 pages, 7 figures. V2: A new section added at the end of the article. V3: Reference slightly update

    Toric anti-self-dual Einstein metrics via complex geometry

    Full text link
    Using the twistor correspondence, we give a classification of toric anti-self-dual Einstein metrics: each such metric is essentially determined by an odd holomorphic function. This explains how the Einstein metrics fit into the classification of general toric anti-self-dual metrics given in an earlier paper (math.DG/0602423). The results complement the work of Calderbank-Pedersen (math.DG/0105263), who describe where the Einstein metrics appear amongst the Joyce spaces, leading to a different classification. Taking the twistor transform of our result gives a new proof of their theorem.Comment: v2. Published version. Additional references. 14 page

    Pluri-Canonical Models of Supersymmetric Curves

    Full text link
    This paper is about pluri-canonical models of supersymmetric (susy) curves. Susy curves are generalisations of Riemann surfaces in the realm of super geometry. Their moduli space is a key object in supersymmetric string theory. We study the pluri-canonical models of a susy curve, and we make some considerations about Hilbert schemes and moduli spaces of susy curves.Comment: To appear in the proceedings of the intensive period "Perspectives in Lie Algebras", held at the CRM Ennio De Giorgi, Pisa, Italy, 201

    Contact Moishezon threefolds with second Betti number one

    Get PDF
    We prove that the only contact Moishezon threefold having second Betti number equal to one is the projective space.Comment: 5 pages. v2: exposition improved as suggested by the referee. To appear in Archiv der Mat

    Open TURNS: An industrial software for uncertainty quantification in simulation

    Full text link
    The needs to assess robust performances for complex systems and to answer tighter regulatory processes (security, safety, environmental control, and health impacts, etc.) have led to the emergence of a new industrial simulation challenge: to take uncertainties into account when dealing with complex numerical simulation frameworks. Therefore, a generic methodology has emerged from the joint effort of several industrial companies and academic institutions. EDF R&D, Airbus Group and Phimeca Engineering started a collaboration at the beginning of 2005, joined by IMACS in 2014, for the development of an Open Source software platform dedicated to uncertainty propagation by probabilistic methods, named OpenTURNS for Open source Treatment of Uncertainty, Risk 'N Statistics. OpenTURNS addresses the specific industrial challenges attached to uncertainties, which are transparency, genericity, modularity and multi-accessibility. This paper focuses on OpenTURNS and presents its main features: openTURNS is an open source software under the LGPL license, that presents itself as a C++ library and a Python TUI, and which works under Linux and Windows environment. All the methodological tools are described in the different sections of this paper: uncertainty quantification, uncertainty propagation, sensitivity analysis and metamodeling. A section also explains the generic wrappers way to link openTURNS to any external code. The paper illustrates as much as possible the methodological tools on an educational example that simulates the height of a river and compares it to the height of a dyke that protects industrial facilities. At last, it gives an overview of the main developments planned for the next few years

    Deformation of LeBrun's ALE metrics with negative mass

    Full text link
    In this article we investigate deformations of a scalar-flat K\"ahler metric on the total space of complex line bundles over CP^1 constructed by C. LeBrun. In particular, we find that the metric is included in a one-dimensional family of such metrics on the four-manifold, where the complex structure in the deformation is not the standard one.Comment: 20 pages, no figure. V2: added two references, filled a gap in the proof of Theorem 1.2. V3: corrected a wrong statement about Kuranishi family of a Hirzebruch surface stated in the last paragraph in the proof of Theorem 1.2, and fixed a relevant error in the proof. Also added a reference [24] about Kuranishi family of Hirzebruch surface

    Maximum solutions of normalized Ricci flows on 4-manifolds

    Full text link
    We consider maximum solution g(t)g(t), t[0,+)t\in [0, +\infty), to the normalized Ricci flow. Among other things, we prove that, if (M,ω)(M, \omega) is a smooth compact symplectic 4-manifold such that b2+(M)>1b_2^+(M)>1 and let g(t),t[0,)g(t),t\in[0,\infty), be a solution to (1.3) on MM whose Ricci curvature satisfies that Ric(g(t))3|\text{Ric}(g(t))|\leq 3 and additionally χ(M)=3τ(M)>0\chi(M)=3 \tau (M)>0, then there exists an mNm\in \mathbb{N}, and a sequence of points {xj,kM}\{x_{j,k}\in M\}, j=1,...,mj=1, ..., m, satisfying that, by passing to a subsequence, (M,g(tk+t),x1,k,...,xm,k)dGH(j=1mNj,g,x1,,...,,xm,),(M, g(t_{k}+t), x_{1,k},..., x_{m,k}) \stackrel{d_{GH}}\longrightarrow (\coprod_{j=1}^m N_j, g_{\infty}, x_{1,\infty}, ...,, x_{m,\infty}), t[0,)t\in [0, \infty), in the mm-pointed Gromov-Hausdorff sense for any sequence tkt_{k}\longrightarrow \infty, where (Nj,g)(N_{j}, g_{\infty}), j=1,...,mj=1,..., m, are complete complex hyperbolic orbifolds of complex dimension 2 with at most finitely many isolated orbifold points. Moreover, the convergence is CC^{\infty} in the non-singular part of 1mNj\coprod_1^m N_{j} and Volg0(M)=j=1mVolg(Nj)\text{Vol}_{g_{0}}(M)=\sum_{j=1}^{m}\text{Vol}_{g_{\infty}}(N_{j}), where χ(M)\chi(M) (resp. τ(M)\tau(M)) is the Euler characteristic (resp. signature) of MM.Comment: 23 page
    corecore