3 research outputs found

    On the application of the factsage thermochemical software and databases in materials science and pyrometallurgy

    Get PDF
    ABSTRACT: The discovery of new metallic materials is of prime importance for the development of new technologies in many fields such as electronics, aerial and ground transportation as well as construction. These materials require metals which are obtained from various pyrometallurgical processes. Moreover, these materials need to be synthesized under extreme conditions of temperature where liquid solutions are produced and need to be contained. The design and optimization of all these pyrometallurgical processes is a key factor in this development. We present several examples in which computational thermochemistry is used to simulate complex pyrometallurgical processes including the Hall–Heroult process (Al production), the PTVI process (Ni production), and the steel deoxidation from an overall mass balance and energy balance perspective. We also show how computational thermochemistry can assist in the material selection in these extreme operation conditions to select refractory materials in contact with metallic melts. The FactSage thermochemical software and its specialized databases are used to perform these simulations which are proven here to match available data found in the literature

    Industrial Data-Driven Processing Framework Combining Process Knowledge for Improved Decision Making—Part 1: Framework Development

    No full text
    Data management systems are increasingly used in industrial processes. However, data collected as part of industrial process operations, such as sensor or measurement instruments data, contain various sources of errors that can hamper process analysis and decision making. The authors propose an operating-regime-based data processing framework for industrial process decision making. The framework was designed to increase the quality and take advantage of available process data use to make informed offline strategic business operation decisions, i.e., environmental, cost and energy analysis, optimization, fault detection, debottlenecking, etc. The approach was synthesized from best practices derived from the available framework and improved upon its predecessor by putting forward the combination of process expertise and data-driven approaches. This systematic and structured approach includes the following stages: (1) scope of the analysis, (2) signal processing, (3) steady-state operating periods detection, (4) data reconciliation and (5) operating regime detection and identification. The proposed framework is applied to the brownstock washing department of a dissolving pulp mill. Over a 5-month period, the process was found to be in steady-state 32% of the time. Twenty (20) distinct operating regimes were identified. Further processing with the help of data reconciliation techniques, principal component analysis and k-means clustering showed that the main drivers explaining the operating regimes are the pulp level in tanks, its density, and the shower wash water flow rate. Additionally, it was concluded that the top four persistently problematic sensors across the steady-state spans that would need to be verified are three flow meters (06FIC137, 06FIC152, and 06FIC433), and one consistency sensor (06NIC423). This information was relayed to process experts contacts at the plant for further investigation
    corecore