1,333 research outputs found

    Temperature and ac Effects on Charge Transport in Metallic Arrays of Dots

    Full text link
    We investigate the effects of finite temperature, dc pulse, and ac drives on the charge transport in metallic arrays using numerical simulations. For finite temperatures there is a finite conduction threshold which decreases linearly with temperature. Additionally we find a quadratic scaling of the current-voltage curves which is independent of temperature for finite thresholds. These results are in excellent agreement with recent experiments on 2D metallic dot arrays. We have also investigated the effects of an ac drive as well as a suddenly applied dc drive. With an ac drive the conduction threshold decreases for fixed frequency and increasing amplitude and saturates for fixed amplitude and increasing frequency. For sudden applied dc drives below threshold we observe a long time power law conduction decay.Comment: 6 pages, 7 postscript figure

    MIMAC : A micro-tpc matrix for directional detection of dark matter

    Full text link
    Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from background. However, this strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of tracks down to a few mm. To achieve this goal, the MIMAC project has been developed. It is based on a gaseous micro-TPC matrix, filled with CF4 and CHF3. The first results on low energy nuclear recoils (H, F) obtained with a low mono-energetic neutron field are presented. The discovery potential of this search strategy is discussed and illustrated by a realistic case accessible to MIMAC.Comment: 6 pages, Proc. of the fifth international symposium on large TPCs for low energy rare event detection, Paris, France, Dec. 2010. To appear in Journal of Physic

    Laboratory simulation of the electrodynamic interactions of a tethered satellite with an ionospheric plasma

    Get PDF
    An improved experimental set-up in the Orleans Plasma Chamber allowed investigations of the I-V characteristics of a conductive spherical body (10 cm diameter) in a plasma environment. Moreover, the influence of a transversal magnetic field at 0.6 and 1.2 G was investigated, for the first time, both on the sheath potential profile and current collection. Floating potential profiles were measured at 16 different radial distances from the test body up to 9 body radii in 8 different angular positions. The test body potential could be increased in the range from -200 V up to +100 V. Preliminary results are shown and discussed

    The Mid-Infrared Instrument for the James Webb Space Telescope, V: Predicted Performance of the MIRI Coronagraphs

    Full text link
    The imaging channel on the Mid-Infrared Instrument (MIRI) is equipped with four coronagraphs that provide high contrast imaging capabilities for studying faint point sources and extended emission that would otherwise be overwhelmed by a bright point-source in its vicinity. Such bright sources might include stars that are orbited by exoplanets and circumstellar material, mass-loss envelopes around post-main-sequence stars, the near-nuclear environments in active galaxies, and the host galaxies of distant quasars. This paper describes the coronagraphic observing modes of MIRI, as well as performance estimates based on measurements of the MIRI flight model during cryo-vacuum testing. A brief outline of coronagraphic operations is also provided. Finally, simulated MIRI coronagraphic observations of a few astronomical targets are presented for illustration

    Preparing the COROT space mission: new variable stars in the galactic Anticenter direction

    Get PDF
    The activities related to the preparation of the asteroseismic, photometric space mission COROT are described. Photoelectric observations, wide--field CCD photometry, uvbyB calibrations and further time--series have been obtained at different observatories and telescopes. They have been planned to complete the COROT programme in the direction of the galactic Anticenter. In addition to suitable asteroseismic targets covering the different evolutionary stages between ZAMS and TAMS, we discovered several other variable stars, both pulsating and geometrical. We compared results on the incidence of variability in the galactic Center and Anticenter directions. Physical parameters have been obtained and evolutionary tracks fitting them have been calculated. The peculiarities of some individual stars alre pointed out. Paper based on observations collected at the San Pedro Martir, Sierra Nevada, Teide, La Silla, Haute-Provence and Roque de Los Muchachos (Telescopio Nazionale Galileo and Mercator telescopes) observatories.Comment: 13 pages, 9 figures. Accepted for The Astronomical Journal (2005 May volume

    Modelling a high-mass red giant observed by CoRoT

    Get PDF
    The G6 giant HR\,2582 (HD\,50890) was observed by CoRoT for approximately 55 days. Mode frequencies are extracted from the observed Fourier spectrum of the light curve. Numerical stellar models are then computed to determine the characteristics of the star (mass, age, etc...) from the comparison with observational constraints. We provide evidence for the presence of solar-like oscillations at low frequency, between 10 and 20\,μ\muHz, with a regular spacing of (1.7±0.1)μ(1.7\pm0.1)\muHz between consecutive radial orders. Only radial modes are clearly visible. From the models compatible with the observational constraints used here, We find that HR\,2582 (HD\,50890) is a massive star with a mass in the range (3--\,5\,MM_{\odot}), clearly above the red clump. It oscillates with rather low radial order (nn = 5\,--\,12) modes. Its evolutionary stage cannot be determined with precision: the star could be on the ascending red giant branch (hydrogen shell burning) with an age of approximately 155 Myr or in a later phase (helium burning). In order to obtain a reasonable helium amount, the metallicity of the star must be quite subsolar. Our best models are obtained with a mixing length significantly smaller than that obtained for the Sun with the same physical description (except overshoot). The amount of core overshoot during the main-sequence phase is found to be mild, of the order of 0.1\,HpH_{\rm p}.Comment: Accepted in A&

    Morphology of the very inclined debris disk around HD 32297

    Get PDF
    Direct imaging of circumstellar disks at high angular resolution is mandatory to provide morphological information that bring constraints on their properties, in particular the spatial distribution of dust. New techniques combining observing strategy and data processing now allow very high contrast imaging with 8-m class ground-based telescopes (10^-4 to 10^-5 at ~1") and complement space telescopes while improving angular resolution at near infrared wavelengths. We carried out a program at the VLT with NACO to image known debris disks with higher angular resolution in the near IR than ever before in order to study morphological properties and ultimately to detect signpost of planets. The observing method makes use of advanced techniques: Adaptive Optics, Coronagraphy and Differential Imaging, a combination designed to directly image exoplanets with the upcoming generation of "planet finders" like GPI (Gemini Planet Imager) and SPHERE (Spectro-Polarimetric High contrast Exoplanet REsearch). Applied to extended objects like circumstellar disks, the method is still successful but produces significant biases in terms of photometry and morphology. We developed a new model-matching procedure to correct for these biases and hence to bring constraints on the morphology of debris disks. From our program, we present new images of the disk around the star HD 32297 obtained in the H (1.6mic) and Ks (2.2mic) bands with an unprecedented angular resolution (~65 mas). The images show an inclined thin disk detected at separations larger than 0.5-0.6". The modeling stage confirms a very high inclination (i=88{\deg}) and the presence of an inner cavity inside r_0~110AU. We also found that the spine (line of maximum intensity along the midplane) of the disk is curved and we attributed this feature to a large anisotropic scattering factor (g~0.5, valid for an non-edge on disk). Abridged ...Comment: 12 pages, 10 figures, accepted for publication in Astronomy and Astrophysic

    Negative shuttle charging during TSS 1R

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95208/1/grl10553.pd
    corecore