2,370 research outputs found

    Metastability in the two-dimensional Ising model with free boundary conditions

    Full text link
    We investigate metastability in the two dimensional Ising model in a square with free boundary conditions at low temperatures. Starting with all spins down in a small positive magnetic field, we show that the exit from this metastable phase occurs via the nucleation of a critical droplet in one of the four corners of the system. We compute the lifetime of the metastable phase analytically in the limit T0T\to 0, h0h\to 0 and via Monte Carlo simulations at fixed values of TT and hh and find good agreement. This system models the effects of boundary domains in magnetic storage systems exiting from a metastable phase when a small external field is applied.Comment: 24 pages, TeX fil

    Approach to equilibrium for the stochastic NLS

    Full text link
    We study the approach to equilibrium, described by a Gibbs measure, for a system on a dd-dimensional torus evolving according to a stochastic nonlinear Schr\"odinger equation (SNLS) with a high frequency truncation. We prove exponential approach to the truncated Gibbs measure both for the focusing and defocusing cases when the dynamics is constrained via suitable boundary conditions to regions of the Fourier space where the Hamiltonian is convex. Our method is based on establishing a spectral gap for the non self-adjoint Fokker-Planck operator governing the time evolution of the measure, which is {\it uniform} in the frequency truncation NN. The limit NN\to\infty is discussed.Comment: 15 p

    On time's arrow in Ehrenfest models with reversible deterministic dynamics

    Full text link
    We introduce a deterministic, time-reversible version of the Ehrenfest urn model. The distribution of first-passage times from equilibrium to non-equilibrium states and vice versa is calculated. We find that average times for transition to non-equilibrium always scale exponentially with the system size, whereas the time scale for relaxation to equilibrium depends on microscopic dynamics. To illustrate this, we also look at deterministic and stochastic versions of the Ehrenfest model with a distribution of microscopic relaxation times.Comment: 6 pages, 7 figures, revte

    Heat conduction in disordered harmonic lattices with energy conserving noise

    Full text link
    We study heat conduction in a harmonic crystal whose bulk dynamics is supplemented by random reversals (flips) of the velocity of each particle at a rate λ\lambda. The system is maintained in a nonequilibrium stationary state(NESS) by contacts with Langevin reservoirs at different temperatures. We show that the one-body and pair correlations in this system are the same (after an appropriate mapping of parameters) as those obtained for a model with self-consistent reservoirs. This is true both for the case of equal and random(quenched) masses. While the heat conductivity in the NESS of the ordered system is known explicitly, much less is known about the random mass case. Here we investigate the random system, with velocity flips. We improve the bounds on the Green-Kubo conductivity obtained by C.Bernardin. The conductivity of the 1D system is then studied both numerically and analytically. This sheds some light on the effect of noise on the transport properties of systems with localized states caused by quenched disorder.Comment: 19 pages, 8 figure

    Percolation in the Harmonic Crystal and Voter Model in three dimensions

    Full text link
    We investigate the site percolation transition in two strongly correlated systems in three dimensions: the massless harmonic crystal and the voter model. In the first case we start with a Gibbs measure for the potential, U=J2(ϕ(x)ϕ(y))2U=\frac{J}{2} \sum_{} (\phi(x) - \phi(y))^2, x,yZ3x,y \in \mathbb{Z}^3, J>0J > 0 and ϕ(x)R\phi(x) \in \mathbb{R}, a scalar height variable, and define occupation variables ρh(x)=1,(0)\rho_h(x) =1,(0) for ϕ(x)>h(<h)\phi(x) > h (<h). The probability pp of a site being occupied, is then a function of hh. In the voter model we consider the stationary measure, in which each site is either occupied or empty, with probability pp. In both cases the truncated pair correlation of the occupation variables, G(xy)G(x-y), decays asymptotically like xy1|x-y|^{-1}. Using some novel Monte Carlo simulation methods and finite size scaling we find accurate values of pcp_c as well as the critical exponents for these systems. The latter are different from that of independent percolation in d=3d=3, as expected from the work of Weinrib and Halperin [WH] for the percolation transition of systems with G(r)raG(r) \sim r^{-a} [A. Weinrib and B. Halperin, Phys. Rev. B 27, 413 (1983)]. In particular the correlation length exponent ν\nu is very close to the predicted value of 2 supporting the conjecture by WH that ν=2a\nu= \frac{2}{a} is exact.Comment: 8 figures. new version significantly different from the old one, includes new results, figures et

    Effect of phonon-phonon interactions on localization

    Get PDF
    We study the heat current J in a classical one-dimensional disordered chain with on-site pinning and with ends connected to stochastic thermal reservoirs at different temperatures. In the absence of anharmonicity all modes are localized and there is a gap in the spectrum. Consequently J decays exponentially with system size N. Using simulations we find that even a small amount of anharmonicity leads to a J~1/N dependence, implying diffusive transport of energy.Comment: 4 pages, 2 figures, Published versio

    Multicomponent fluids of hard hyperspheres in odd dimensions

    Get PDF
    Mixtures of hard hyperspheres in odd space dimensionalities are studied with an analytical approximation method. This technique is based on the so-called Rational Function Approximation and provides a procedure for evaluating equations of state, structure factors, radial distribution functions, and direct correlations functions of additive mixtures of hard hyperspheres with any number of components and in arbitrary odd-dimension space. The method gives the exact solution of the Ornstein--Zernike equation coupled with the Percus--Yevick closure, thus extending to arbitrary odd dimension the solution for hard-sphere mixtures [J. L. Lebowitz, Phys.\ Rev.\ \textbf{133}, 895 (1964)]. Explicit evaluations for binary mixtures in five dimensions are performed. The results are compared with computer simulations and a good agreement is found.Comment: 16 pages, 8 figures; v2: slight change of notatio

    Product Measure Steady States of Generalized Zero Range Processes

    Full text link
    We establish necessary and sufficient conditions for the existence of factorizable steady states of the Generalized Zero Range Process. This process allows transitions from a site ii to a site i+qi+q involving multiple particles with rates depending on the content of the site ii, the direction qq of movement, and the number of particles moving. We also show the sufficiency of a similar condition for the continuous time Mass Transport Process, where the mass at each site and the amount transferred in each transition are continuous variables; we conjecture that this is also a necessary condition.Comment: 9 pages, LaTeX with IOP style files. v2 has minor corrections; v3 has been rewritten for greater clarit
    corecore