1,070 research outputs found

    Entropy of Open Lattice Systems

    Full text link
    We investigate the behavior of the Gibbs-Shannon entropy of the stationary nonequilibrium measure describing a one-dimensional lattice gas, of L sites, with symmetric exclusion dynamics and in contact with particle reservoirs at different densities. In the hydrodynamic scaling limit, L to infinity, the leading order (O(L)) behavior of this entropy has been shown by Bahadoran to be that of a product measure corresponding to strict local equilibrium; we compute the first correction, which is O(1). The computation uses a formal expansion of the entropy in terms of truncated correlation functions; for this system the k-th such correlation is shown to be O(L^{-k+1}). This entropy correction depends only on the scaled truncated pair correlation, which describes the covariance of the density field. It coincides, in the large L limit, with the corresponding correction obtained from a Gaussian measure with the same covariance.Comment: Latex, 28 pages, 4 figures as eps file

    Kinetics of a Model Weakly Ionized Plasma in the Presence of Multiple Equilibria

    Get PDF
    We study, globaly in time, the velocity distribution f(v,t)f(v,t) of a spatially homogeneous system that models a system of electrons in a weakly ionized plasma, subjected to a constant external electric field EE. The density ff satisfies a Boltzmann type kinetic equation containing a full nonlinear electron-electron collision term as well as linear terms representing collisions with reservoir particles having a specified Maxwellian distribution. We show that when the constant in front of the nonlinear collision kernel, thought of as a scaling parameter, is sufficiently strong, then the L1L^1 distance between ff and a certain time dependent Maxwellian stays small uniformly in tt. Moreover, the mean and variance of this time dependent Maxwellian satisfy a coupled set of nonlinear ODE's that constitute the ``hydrodynamical'' equations for this kinetic system. This remain true even when these ODE's have non-unique equilibria, thus proving the existence of multiple stabe stationary solutions for the full kinetic model. Our approach relies on scale independent estimates for the kinetic equation, and entropy production estimates. The novel aspects of this approach may be useful in other problems concerning the relation between the kinetic and hydrodynamic scales globably in time.Comment: 30 pages, in TeX, to appear in Archive for Rational Mechanics and Analysis: author's email addresses: [email protected], [email protected], [email protected], [email protected], [email protected]

    Propagation of Chaos for a Thermostated Kinetic Model

    Full text link
    We consider a system of N point particles moving on a d-dimensional torus. Each particle is subject to a uniform field E and random speed conserving collisions. This model is a variant of the Drude-Lorentz model of electrical conduction. In order to avoid heating by the external field, the particles also interact with a Gaussian thermostat which keeps the total kinetic energy of the system constant. The thermostat induces a mean-field type of interaction between the particles. Here we prove that, starting from a product measure, in the large N limit, the one particle velocity distribution satisfies a self consistent Vlasov-Boltzmann equation.. This is a consequence of "propagation of chaos", which we also prove for this model.Comment: This version adds affiliation and grant information; otherwise it is unchange

    Shift Equivalence of Measures and the Intrinsic Structure of Shocks in the Asymmetric Simple Exclusion Process

    Full text link
    We investigate properties of non-translation-invariant measures, describing particle systems on \bbz, which are asymptotic to different translation invariant measures on the left and on the right. Often the structure of the transition region can only be observed from a point of view which is random---in particular, configuration dependent. Two such measures will be called shift equivalent if they differ only by the choice of such a viewpoint. We introduce certain quantities, called translation sums, which, under some auxiliary conditions, characterize the equivalence classes. Our prime example is the asymmetric simple exclusion process, for which the measures in question describe the microscopic structure of shocks. In this case we compute explicitly the translation sums and find that shocks generated in different ways---in particular, via initial conditions in an infinite system or by boundary conditions in a finite system---are described by shift equivalent measures. We show also that when the shock in the infinite system is observed from the location of a second class particle, treating this particle either as a first class particle or as an empty site leads to shift equivalent shock measures.Comment: Plain TeX, 2 figures; [email protected], [email protected], [email protected], [email protected]

    Product Measure Steady States of Generalized Zero Range Processes

    Full text link
    We establish necessary and sufficient conditions for the existence of factorizable steady states of the Generalized Zero Range Process. This process allows transitions from a site ii to a site i+qi+q involving multiple particles with rates depending on the content of the site ii, the direction qq of movement, and the number of particles moving. We also show the sufficiency of a similar condition for the continuous time Mass Transport Process, where the mass at each site and the amount transferred in each transition are continuous variables; we conjecture that this is also a necessary condition.Comment: 9 pages, LaTeX with IOP style files. v2 has minor corrections; v3 has been rewritten for greater clarit
    • …
    corecore