125 research outputs found

    Palaeobiology, ecology, and distribution of stromatoporoid faunas in biostromes of the mid-Ludlow of Gotland

    Get PDF
    Six well exposed mid−Ludlow stromatoporoid−dominated reef biostromes in four localities from the Hemse Group in southeastern Gotland, Sweden comprise a stromatoporoid assemblage dominated by four species; Clathrodictyon mohicanum, “Stromatopora” bekkeri, Plectostroma scaniense, and Lophiostroma schmidtii. All biostromes investigated in this area (of approximately 30 km2) are interpreted to belong to a single faunal assemblage forming a dense accumulation of fossils that is probably the best exposed stromatoporoid−rich deposit of the Silurian. The results from this comprehensive study strengthen earlier interpretations of a combination of genetic and environmental control on growth−forms of the stromatoporoids. Growth styles are similar for stromatoporoids in all six biostromes. Differences in biostrome fabric are due to variations in the degree of disturbance by storms. The uniformity of facies and the widespread low−diversity fauna support the view that palaeoenvironmental conditions were similar across the area where these biostromes crop out, and promoted the extraordinary growth of stromatoporoids in this shallow shelf area

    Synthesis of Saturated Heterocycles via Metal-Catalyzed Formal Cycloaddition Reactions That Generate a C–N or C–O Bond

    Full text link

    A Computational Analysis of the Collision-Induced Dissociation Mechanisms of the Dipeptide Glycine-Serine Under Mass Spectrometry

    No full text
    Collision-induced dissociation (CID) of peptides using tandem mass spectrometry (MS) has been used to determine the identity of peptides and other large biological molecules. Mass spectrometry (MS) is a useful tool for determining the identity of molecules based on their interaction with electromagnetic fields. If coupled with another method like infrared (IR) vibrational spectroscopy, MS can provide structural information, but in its own right, MS can only provide the mass-to-charge (m/z) ratio of the fragments produced, which may not be enough information to determine the mechanism of the collision-induced dissociation (CID) of the molecule. In this case, theoretical calculations provide a useful companion for MS data and yield clues about the energetics of the dissociation. In this study, negative ion electrospray tandem MS was used to study the CID of the deprotonated dipeptide glycine-serine (Gly-Ser). Though negative ion MS is not as popular a choice as positive ion MS, studies by Bowie et al. show that it yields unique clues about molecular structure which complement positive ion spectroscopy, such as characteristic fragmentations like the loss of formaldehyde from the serine residue.2 The increase in the collision energy in the mass spectrometer alters the flexibility of the dipeptide backbone, enabling isomerizations (reactions not resulting in a fragment loss) and dissociations to take place. The mechanism of the CID of Gly-Ser was studied using two computational methods, B3LYP/6-311+G* and M06-2X/6-311++G**. The main pathway for molecular dissociation was analyzed in 5 conformers in an attempt to verify the initial mechanism proposed by Dr. James Swan after examination of the MS data. The results suggest that the loss of formaldehyde from serine, which Bowie et al. indicates is a characteristic of the presence of serine in a protein residue, is an endothermic reaction that is made possible by the conversion of the translational energy of the ion into internal energy as the ion collides with the inert collision gas. It has also been determined that the M06-2X functional¿s improved description of medium and long-range correlation makes it more effective than the B3LYP functional at finding elusive transition states. M06-2X also more accurately predicts the energy of those transition states than does B3LYP. A second CID mechanism, which passes through intermediates with the same m/z ratio as the main pathway for molecular dissociation, but different structures, including a diketopiperazine intermediate, was also studied. This pathway for molecular dissociation was analyzed with 3 conformers and the M06-2X functional, due to its previously determined effectiveness. The results suggest that the latter pathway, which meets the same intermediate masses as the first mechanism, is lower in overall energy and therefore a more likely pathway of dissociation than the first mechanism

    Formation of Deprotonated 2-Imidazoline-4(5)-One Product Ions in the Collision-Induced Dissociation of Some Serine-Containing Dipeptides

    No full text
    A deprotonated 2-imidazoline-4(5)-one product ion was observed as a major fragment in the collision-induced dissociation (CID) of several dipeptides containing serine at the C-terminal and an amino acid with an alkyl substituent at the N-terminal. This fragment becomes predominant at high collision energies. The same type of product ion was seen in the CID of cyclo(GlyGly). Labeling GlySer with O-18 suggests that the fragmentation may proceed through a symmetrical intermediate such as a deprotonated diketopiperazine. Density functional theory calculations of GlySer provided a possible mechanism for the fragmentation. (C) 2015 Elsevier B.V. All rights\u27 reserved

    Formation of Deprotonated 2-Imidazoline-4(5)-One Product Ions in the Collision-Induced Dissociation of Some Serine-Containing Dipeptides

    No full text
    A deprotonated 2-imidazoline-4(5)-one product ion was observed as a major fragment in the collision-induced dissociation (CID) of several dipeptides containing serine at the C-terminal and an amino acid with an alkyl substituent at the N-terminal. This fragment becomes predominant at high collision energies. The same type of product ion was seen in the CID of cyclo(GlyGly). Labeling GlySer with O-18 suggests that the fragmentation may proceed through a symmetrical intermediate such as a deprotonated diketopiperazine. Density functional theory calculations of GlySer provided a possible mechanism for the fragmentation
    • 

    corecore