6,094 research outputs found

    Complete Semiclassical Treatment of the Quantum Black Hole Problem

    Get PDF
    Two types of semiclassical calculations have been used to study quantum effects in black hole backgrounds, the WKB and the mean field approaches. In this work we systematically reconstruct the logical implications of both methods on quantum black hole physics and provide the link between these two approaches. Our conclusions completely support our previous findings based solely on the WKB method: quantum black holes are effectively p-brane excitations and, consequently, no information loss paradox exists in this problem.Comment: 14 pages, REVTE

    Conjectures on Non-Local Effects in String Black Holes

    Full text link
    We consider modifications to general relativity by the non-local (classical and quantum) string effects for the case of a D-dimensional Scwarzschild black hole. The classical non-local effects do not alter the spacetime topology (the horizon remains unshifted, at least perturbatively). We suggest a simple analytic continuation of the perturbative result into the non-perturbative domain, which eliminates the black hole singularity at the origin and yields an ultraviolet-finite theory of quantum gravity. We investigate the quantum non- local effects (including massive modes) and argue that the inclusion of these back reactions resolves the problem of the thermal spectrum in the semi- classical approach of field quantization in a black hole background, through the bootstrap condition. The density of states for both the quantum and thermal interpretation of the WKB formula are finally shown to differ quant- itatively when including the non-local effects.Comment: 16 pages, REVTE

    Black Extended Objects, Naked Singularities and P-Branes

    Full text link
    We treat the horizons of charged, dilaton black extended objects as quantum mechanical objects. We show that the S matrix for such an object can be written in terms of a p-brane-like action. The requirements of unitarity of the S matrix and positivity of the p-brane tension equivalent severely restrict the number of space-time dimensions and the allowed values of the dilaton parameter a. Generally, black objects transform at the extremal limit into p-branes.Comment: 9 pages, REVTE

    Bosonic D-branes at finite temperature with an external field

    Get PDF
    Bosonic boundary states at finite temperature are constructed as solutions of boundary conditions at T≠0T\neq 0 for bosonic open strings with a constant gauge field FabF_{ab} coupled to the boundary. The construction is done in the framework of thermo field dynamics where a thermal Bogoliubov transformation maps states and operators to finite temperature. Boundary states are given in terms of states from the direct product space between the Fock space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary states heve the interpretation of DpDp-brane at finite temperature. The boundary conditions admit two different solutions. The entropy of the closed string in a DpDp-brane state is computed and analysed. It is interpreted as the entropy of the DpDp-brane at finite temperature.Comment: 21 pages, Latex, revised version with minor corrections and references added, to be published in Phys. Rev.

    Dilatonic Black Holes, Naked Singularities and Strings

    Full text link
    We extend a previous calculation which treated Schwarschild black hole horizons as quantum mechanical objects to the case of a charged, dilaton black hole. We show that for a unique value of the dilaton parameter `a', which is determined by the condition of unitarity of the S matrix, black holes transform at the extremal limit into strings.Comment: 8 pages, REVTE

    Effect of magnetic field on the phase transition in a dusty plasma

    Full text link
    The formation of self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments the pressure and rf power are the main controlling parameters in determining the phase of the system. We have studied the effect of externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment (MDPX) device. Experiments are performed at a fixed pressure and rf power where a crystalline structure is formed within a confining ring. The magnetic field is then increased from 0 to 1.28 T. We report on the breakdown of the crystalline structure with increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe leads to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field.Comment: 9 pages, 5 figure
    • …
    corecore