6,410 research outputs found

    Thickness-dependent magnetic structure of ultrathin Fe/Ir(001) films: from spin-spiral states towards ferromagnetic order

    Full text link
    We present a detailed study of the ground-state magnetic structure of ultrathin Fe films on the surface of fcc Ir(001). We use the spin-cluster expansion technique in combination with the relativistic disordered local moment scheme to obtain parameters of spin models and then determine the favored magnetic structure of the system by means of a mean field approach and atomistic spin dynamics simulations. For the case of a single monolayer of Fe we find that layer relaxations very strongly influence the ground-state spin configurations, whereas Dzyaloshinskii-Moriya (DM) interactions and biquadratic couplings also have remarkable effects. To characterize the latter effect we introduce and analyze spin collinearity maps of the system. While for two monolayers of Fe we find a single-q spin spiral as ground state due to DM interactions, for the case of four monolayers the system shows a noncollinear spin structure with nonzero net magnetization. These findings are consistent with experimental measurements indicating ferromagnetic order in films of four monolayers and thicker.Comment: 9 pages, 7 figure

    Structure of a liquid crystalline fluid around a macroparticle: Density functional theory study

    Full text link
    The structure of a molecular liquid, in both the nematic liquid crystalline and isotropic phases, around a cylindrical macroparticle, is studied using density functional theory. In the nematic phase the structure of the fluid is highly anisotropic with respect to the director, in agreement with results from simulation and phenomenological theories. On going into the isotropic phase the structure becomes rotationally invariant around the macroparticle with an oriented layer at the surface.Comment: 10 pages, 6 figues. Submitted to Phys. Rev.

    Scattering matrix approach to interacting electron transport

    Full text link
    We investigate the modification in mesoscopic electronic transport due to electron-electron interactions making use of scattering states. We demonstrate that for a specific (finite range) interaction kernel, the knowledge of the scattering matrix is sufficient to take interaction effects into account. We calculate perturbatively the corrections to the current and current-current correlator; in agreement with previous work, we find that, in linear response, interaction effects can be accounted for by an effective (renormalized) transmission probability. Beyond linear response, simple renormalization of scattering coefficients is not sufficient to describe the current-current correlator, as additional corrections arise due to irreducible two-particle processes. Furthermore, we find that the correlations between opposite-spin currents induced by interaction are enhanced for an asymmetric scatterer, generating a nonzero result already to lowest order in the interaction

    The probability distribution of the number of electron-positron pairs produced in a uniform electric field

    Full text link
    The probability-generating function of the number of electron-positron pairs produced in a uniform electric field is constructed. The mean and variance of the numbers of pairs are calculated, and analytical expressions for the probability of low numbers of electron-positron pairs are given. A recursive formula is derived for evaluating the probability of any number of pairs. In electric fields of supercritical strength |eE| > \pi m^2/ \ln 2, where e is the electron charge, E is the electric field, and m is the electron mass, a branch-point singularity of the probability-generating function penetrates the unit circle |z| = 1, which leads to the asymptotic divergence of the cumulative probability. This divergence indicates a failure of the continuum limit approximation. In the continuum limit and for any field strength, the positive definiteness of the probability is violated in the tail of the distribution. Analyticity, convergence, and positive definiteness are restored upon the summation over discrete levels of electrons in the normalization volume. Numerical examples illustrating the field strength dependence of the asymptotic behavior of the probability distribution are presented.Comment: 7 pages, REVTeX, 4 figures; new references added; a short version of this e-print has appeared in PR

    Dynamics of Two-Level System Interacting with Random Classical Field

    Full text link
    The dynamics of a particle interacting with random classical field in a two-well potential is studied by the functional integration method. The probability of particle localization in either of the wells is studied in detail. Certain field-averaged correlation functions for quantum-mechanical probabilities and the distribution function for the probabilities of final states (which can be considered as random variables in the presence of a random field) are calculated. The calculated correlators are used to discuss the dependence of the final state on the initial state. One of the main results of this work is that, although the off-diagonal elements of density matrix disappear with time, a particle in the system is localized incompletely (wave-packet reduction does not occur), and the distribution function for the probability of finding particle in one of the wells is a constant at infinite time.Comment: 5 page

    Wave Function Collapse in a Mesoscopic Device

    Full text link
    We determine the non-local in time and space current-current cross correlator in a mesoscopic conductor with a scattering center at the origin. Its excess part appearing at finite voltage exhibits a unique dependence on the retarded variable t1−t2−(∣x1∣−∣x2∣)/vFt_1-t_2-(|x_1|-|x_2|)/ v_{\rm\scriptscriptstyle F}, with vFv_{\rm\scriptscriptstyle F} the Fermi velocity. The non-monotonic dependence of the retardation on x1x_1 and its absence at the symmetric position x1=−x2x_1 = -x_2 is a signature of the wave function collapse, which thus becomes amenable to observation in a mesoscopic solid state device.Comment: 7 pages, 2 fugure

    N-particle scattering matrix for electrons interacting on a quantum dot

    Full text link
    We present a non-perturbative expression for the scattering matrix of NN particles interacting inside a quantum dot. Characterizing the dot by its resonances, we find a compact form for the scattering matrix in a real-time representation. We study the transmission probabilities and interaction-induced orbital entanglement of two electrons incident on the dot in a spin-singlet state.Comment: 4 page

    Bulk viscosity of superfluid neutron stars

    Full text link
    The hydrodynamics, describing dynamical effects in superfluid neutron stars, essentially differs from the standard one-fluid hydrodynamics. In particular, we have four bulk viscosity coefficients in the theory instead of one. In this paper we calculate these coefficients, for the first time, assuming they are due to non-equilibrium beta-processes (such as modified or direct Urca process). The results of our analysis are used to estimate characteristic damping times of sound waves in superfluid neutron stars. It is demonstrated that all four bulk viscosity coefficients lead to comparable dissipation of sound waves and should be considered on the same footing.Comment: 11 pages, 1 figure, this version with some minor stylistic changes is published in Phys. Rev.
    • …
    corecore