39 research outputs found
Complete Analysis of Baryon Magnetic Moments in 1/N_c
We generate a complete basis of magnetic moment operators for the N_c = 3
ground-state baryons in the 1/N_c expansion, and compute and tabulate all
associated matrix elements. We then compare to previous results derived in the
literature and predict additional relations among baryon magnetic moments
holding to subleading order in 1/N_c and flavor SU(3) breaking. Finally, we
predict all unknown diagonal and transition magnetic moments to <= 0.15 mu_N
accuracy, and suggest possible experimental measurements to improve the
analysis even further.Comment: 28 pages (including 11 tables), ReVTeX. One reference and grant
acknowledgment adde
Baryon Charge Radii and Quadrupole Moments in the 1/N_c Expansion: The 3-Flavor Case
We develop a straightforward method to compute charge radii and quadrupole
moments for baryons both with and without strangeness, when the number of QCD
color charges is N_c. The minimal assumption of the single-photon exchange
ansatz implies that only two operators are required to describe these baryon
observables. Our results are presented so that SU(3) flavor and isospin
symmetry breaking can be introduced according to any desired specification,
although we also present results obtained from two patterns suggested by the
quark model with gluon exchange interactions. The method also permits to
extract a number of model-independent relations; a sample is r^2_Lambda / r_n^2
= 3/(N_c+3), independent of SU(3) symmetry breaking.Comment: 30 pages, no figures, REVTeX
Large N_c, Constituent Quarks, and N, Delta Charge Radii
We show how one may define baryon constituent quarks in a rigorous manner,
given physical assumptions that hold in the large-N_c limit of QCD. This
constituent picture gives rise to an operator expansion that has been used to
study large-N_c baryon observables; here we apply it to the case of charge
radii of the N and Delta states, using minimal dynamical assumptions. For
example, one finds the relation r_p^2 - r_{Delta^+}^2 = r_n^2 - r_{Delta^0}^2
to be broken only by three-body, O(1/N_c^2) effects for any N_c.Comment: 15 pages, 1 eps figure. Version to appear in Phys. Rev.
Baryon Mass Splittings in the 1/N_c Expansion
The mass splittings of the spin- octet and spin-
decuplet baryons are analyzed in the expansion combined with
perturbative flavor breaking. We show there is considerable experimental
evidence that the baryon masses satisfy the hierarchy predicted by this
expansion. Since flavor symmetry-breaking suppression factors alone are not
sufficient to describe the observed hierarchy, we conclude that there is firm
evidence for the expansion in the baryon masses. Our analysis differs
from non-relativistic .Comment: 17 pages, LaTe
Selection rules for J^PC Exotic Hybrid Meson Decay in Large-N_c
The coupling of a neutral hybrid {1,3,5...}^-+ exotic particle (or current)
to two neutral (hybrid) meson particles with the same J^PC and J=0 is proved to
be sub-leading to the usual large-N_c QCD counting. The coupling of the same
exotic particle to certain two - (hybrid) meson currents with the same J^PC and
J=0 is also sub-leading. The decay of a {1,3,5...}^-+ hybrid to eta pi^0, eta'
pi^0, eta' eta, eta(1295) pi^0, pi(1300)^0 pi0, eta(1440) pi^0, a_0(980)^0
sigma or f_0(980) sigma is sub-leading, assuming that these final state
particles are (hybrid) mesons in the limit of large N_c.Comment: 16 pages, LaTeX. Main paper shortened/rewritten and appendices
expanded. Implications for phenomenology of exotic hybrid mesons clarifie
(Field) Symmetrization Selection Rules
QCD and QED exhibit an infinite set of three-point Green's functions that
contain only OZI rule violating contributions, and (for QCD) are subleading in
the large N_c expansion. The Green's functions describe the ``decay'' of a
J^{PC}={1,3,5 ...}^{-+} exotic hybrid meson current to two J=0 (hybrid) meson
currents with identical P and C. We prove that the QCD amplitude for a neutral
hybrid {1,3,5 ...}^{-+} exotic current to create eta pi0 only comes from OZI
rule violating contributions under certain conditions, and is subleading in
N_c.Comment: 20 pages, LaTeX. Two postscript figures. Final published versio
Excited Baryon Decay Widths in Large N_c QCD
We study excited baryon decay widths in large N_c QCD. It was suggested
previously that some spin-flavor mixed-symmetric baryon states have strong
couplings of O(N_c^{-1/2}) to nucleons [implying narrow widths of O(1/N_c)], as
opposed to the generic expectation based on Witten's counting rules of an
O(N_c^0) coupling. The calculation obtaining these narrow widths was performed
in the context of a simple quark-shell model. This paper addresses the question
of whether the existence of such narrow states is a general property of large
N_c QCD. We show that a general large N_c QCD analysis does not predict such
narrow states; rather they are a consequence of the extreme simplicity of the
quark model.Comment: 9 page
Excited Baryons in Large N_c QCD Revisited: The Resonance Picture Versus Single-Quark Excitations
We analyze excited baryon properties via a 1/N_c expansion from two
perspectives: as resonances in meson-nucleon scattering, and as single-quark
excitations in the context of a simple quark model. For both types of analysis
one can derive novel patterns of degeneracy that emerge as N_c --> \infty, and
that are shown to be compatible with one another. This helps justify the
single-quark excitation picture and may give some insight into its successes.
We also find that in the large N_c limit one of the S_{11} baryons does not
couple to the pi-N channel but couples to the eta-N channel. This is
empirically observed in the N(1535), which couples very weakly to the pi-N
channel and quite strongly to the eta-N channel. The comparatively strong
coupling of the N(1650) to the pi-N channel and weak coupling to eta-N channel
is also predicted. In the context of the simple quark model picture we
reproduce expressions for mixing angles that are accurate up to O(1/N_c)
corrections and are in good agreement with mixing angles extracted
phenomenologically.Comment: 13 pages, ReVTeX
Baryon masses at second order in large- chiral perturbation theory
We consider flavor breaking in the the octet and decuplet baryon masses at
second order in large- chiral perturbation theory, where is the number
of QCD colors. We assume that , where is the number of light quark
flavors, and are the parameters controlling
flavor breaking in chiral perturbation theory. We consistently include
non-analytic contributions to the baryon masses at orders , , and . The corrections are small for
the relations that follow from symmetry alone, but the corrections to
the large- relations are large and have the wrong sign. Chiral
power-counting and large- consistency allow a 2-loop contribution at order
, and a non-trivial explicit calculation is required to show
that this contribution vanishes. At second order in the expansion, there are
eight relations that are non-trivial consequences of the expansion, all
of which are well satisfied within the experimental errors. The average
deviation at this order is 7 \MeV for the \De I = 0 mass differences and
0.35 \MeV for the \De I \ne 0 mass differences, consistent with the
expectation that the error is of order .Comment: 19 pages, 2 uuencoded ps figs, uses revte
Isospin splitting in heavy baryons and mesons
A recent general analysis of light-baryon isospin splittings is updated and
extended to charmed baryons.
The measured and splittings stand out as being difficult
to understand in terms of two-body forces alone.
We also discuss heavy-light mesons; though the framework here is necessarily
less general, we nevertheless obtain some predictions that are not strongly
model-dependent.Comment: 12 pages REVTEX 3, plus 4 uuencoded ps figures, CMU-HEP93-