40 research outputs found

    The role of electron-electron interactions in two-dimensional Dirac fermions

    Full text link
    The role of electron-electron interactions on two-dimensional Dirac fermions remains enigmatic. Using a combination of nonperturbative numerical and analytical techniques that incorporate both the contact and long-range parts of the Coulomb interaction, we identify the two previously discussed regimes: a Gross-Neveu transition to a strongly correlated Mott insulator, and a semi-metallic state with a logarithmically diverging Fermi velocity accurately described by the random phase approximation. Most interestingly, experimental realizations of Dirac fermions span the crossover between these two regimes providing the physical mechanism that masks this velocity divergence. We explain several long-standing mysteries including why the observed Fermi velocity in graphene is consistently about 20 percent larger than the best values calculated using ab initio and why graphene on different substrates show different behavior.Comment: 11 pages, 4 figure

    Strategic Insights From Playing the Quantum Tic-Tac-Toe

    Full text link
    In this paper, we perform a minimalistic quantization of the classical game of tic-tac-toe, by allowing superpositions of classical moves. In order for the quantum game to reduce properly to the classical game, we require legal quantum moves to be orthogonal to all previous moves. We also admit interference effects, by squaring the sum of amplitudes over all moves by a player to compute his or her occupation level of a given site. A player wins when the sums of occupations along any of the eight straight lines we can draw in the 3×33 \times 3 grid is greater than three. We play the quantum tic-tac-toe first randomly, and then deterministically, to explore the impact different opening moves, end games, and different combinations of offensive and defensive strategies have on the outcome of the game. In contrast to the classical tic-tac-toe, the deterministic quantum game does not always end in a draw. In contrast also to most classical two-player games of no chance, it is possible for Player 2 to win. More interestingly, we find that Player 1 enjoys an overwhelming quantum advantage when he opens with a quantum move, but loses this advantage when he opens with a classical move. We also find the quantum blocking move, which consists of a weighted superposition of moves that the opponent could use to win the game, to be very effective in denying the opponent his or her victory. We then speculate what implications these results might have on quantum information transfer and portfolio optimization.Comment: 20 pages, 3 figures, and 3 tables. LaTeX 2e using iopart class, and braket, color, graphicx, multirow, subfig, url package

    Internal mammary lymph node recurrence: rare but characteristic metastasis site in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the frequency of IMLN recurrence, its associated risk factors with disease-free interval (DFI) and its predicting factors on overall survival time.</p> <p>Methods</p> <p>133 cases of breast cancer IMLN recurrence were identified via the computerized CT reporting system between February 2003 and June 2008, during which chest CT for patients with breast cancer (n = 8867) were performed consecutively at Cancer Hospital, Fudan University, Shanghai, China. Patients' charts were retrieved and patients' characteristics, disease characteristics, and treatments after recurrence were collected for analysis. The frequency was 1.5% (133/8867).</p> <p>Results</p> <p>IMLN recurrence was presented as the first metastatic site in 121 (91%) patients while 88 (66.2%) had other concurrent metastases. Typical chest CT images included swelling of the IMLN at the ipsilateral side with local lump and sternal erosion located mostly between the second and third intercostal space. The median disease-free interval (DFI) of IMLN recurrence was 38 months. The independent factors that could delay the IMLN recurrence were small tumor size (HR 0.5 95%CI: 0.4 - 0.8; <it>p </it>= 0.002), and positive ER/PR disease (HR 0.6, 95% CI: 0.4 - 0.9; <it>p </it>= 0.006). The median survival time after IMLN recurrence was 42 months, with a 5-year survival rate of 30%. Univariate analysis showed four variables significantly influenced the survival time: DFI of IMLN recurrence (p = 0.001), no concurrent distant metastasis (p = 0.024), endocrine therapy for patients with positive ER/PR (p = 0.000), radiotherapy (p = 0.040). The independent factors that reduced the death risk were no concurrent distant metastases (HR: 0.7, 95% CI: 0.4 - 0.9; <it>p </it>= 0.031), endocrine therapy for patients with positive ER/PR status (HR: 0.2, 95% CI: 0.1 - 0.5; <it>p </it>= 0.001) and palliative radiotherapy (HR: 0.3, 95% CI: 0.1- 0.9; <it>p </it>= 0.026).</p> <p>Conclusions</p> <p>The risk of IMLN recurrence is low and there are certain characteristics features on CT images. ER/PR status is both a risk factor for DFI of IMLN recurrence and a prognostic factor for overall survival after IMLN recurrence. Patients with only IMLN recurrence and/or local lesion have a good prognosis.</p

    MOS11: A New Component in the mRNA Export Pathway

    Get PDF
    Nucleocytoplasmic trafficking is emerging as an important aspect of plant immunity. The three related pathways affecting plant immunity include Nuclear Localization Signal (NLS)–mediated nuclear protein import, Nuclear Export Signal (NES)–dependent nuclear protein export, and mRNA export relying on MOS3, a nucleoporin belonging to the Nup107–160 complex. Here we report the characterization, identification, and detailed analysis of Arabidopsis modifier of snc1, 11 (mos11). Mutations in MOS11 can partially suppress the dwarfism and enhanced disease resistance phenotypes of snc1, which carries a gain-of-function mutation in a TIR-NB-LRR type Resistance gene. MOS11 encodes a conserved eukaryotic protein with homology to the human RNA binding protein CIP29. Further functional analysis shows that MOS11 localizes to the nucleus and that the mos11 mutants accumulate more poly(A) mRNAs in the nucleus, likely resulting from reduced mRNA export activity. Epistasis analysis between mos3-1 and mos11-1 revealed that MOS11 probably functions in the same mRNA export pathway as MOS3, in a partially overlapping fashion, before the mRNA molecules pass through the nuclear pores. Taken together, MOS11 is identified as a new protein contributing to the transfer of mature mRNA from the nucleus to the cytosol

    Strategic Insights From Playing the Quantum Tic-Tac-Toe

    No full text
    In this paper, we perform a minimalistic quantization of the classical game of tic-tac-toe, by allowing superpositions of classical moves. In order for the quantum game to reduce properly to the classical game, we require legal quantum moves to be orthogonal to all previous moves. We also admit interference effects, by squaring the sum of amplitudes over all moves by a player to compute his or her occupation level of a given site. A player wins when the sums of occupations along any of the eight straight lines we can draw in the 3×33 \times 3 grid is greater than three. We play the quantum tic-tac-toe first randomly, and then deterministically, to explore the impact different opening moves, end games, and different combinations of offensive and defensive strategies have on the outcome of the game. In contrast to the classical tic-tac-toe, the deterministic quantum game does not always end in a draw. In contrast also to most classical two-player games of no chance, it is possible for Player 2 to win. More interestingly, we find that Player 1 enjoys an overwhelming quantum advantage when he opens with a quantum move, but loses this advantage when he opens with a classical move. We also find the quantum blocking move, which consists of a weighted superposition of moves that the opponent could use to win the game, to be very effective in denying the opponent his or her victory. We then speculate what implications these results might have on quantum information transfer and portfolio optimization.
    corecore