5 research outputs found

    Co-Cultures of Oophila Amblystomatis Between Ambystoma Maculatum and Ambystoma Gracile Hosts Show Host-Symbiont Fidelity

    Get PDF
    A unique symbiosis occurs between embryos of the spotted salamander (Ambystoma maculatum) and a green alga (Oophila amblystomatis). Unlike most vertebrate host-symbiont relationships, which are ectosymbiotic, A. maculatum exhibits both an ecto- and an endo-symbiosis, where some of the green algal cells living inside egg capsules enter embryonic tissues as well as individual salamander cells. Past research has consistently categorized this symbiosis as a mutualism, making this the first example of a “beneficial” microbe entering vertebrate cells. Another closely related species of salamander, Ambystoma gracile, also harbors beneficial Oophila algae in its egg capsules. However, our sampling within the A. gracile range consistently shows this to be a strict ectosymbiotic interaction—with no sign of tissue or presumably cellular entry. In this study we swapped cultured algae derived from intracapsular fluid of different salamander hosts to test the fidelity of tissue entry in these symbioses. Both A. maculatum and A. gracile embryos were raised in cultures with their own algae or algae cultured from the other host. Under these in vitro culture conditions A. maculatum algae will enter embryonic A. maculatum tissues. Additionally, although at a much lower frequency, A. gracile derived algae will also enter A. maculatum host tissues. However, neither Oophila strain enters A. gracile hosts in these co-culture conditions. These data reveal a potential host-symbiont fidelity that allows the unique endosymbiosis to occur in A. maculatum, but not in A. gracile. However, preliminary trials in our study found that persistent endogenous A. maculatum algae, as opposed to the cultured algae used in subsequent trials, enters host tissues at a higher frequency. An analysis of previously published Oophila transcriptomes revealed dramatic differences in gene expression between cultured and intracapsular Oophila. These include a suite of genes in protein and cell wall synthesis, photosynthesis, central carbon metabolism suggesting the intracapsular algae are assimilating ammonia for nitrogen metabolism and may be undergoing a life-cycle transition. Further refinements of these co-culture conditions could help determine physiological differences between cultured and endogenous algae, as well as rate-limiting cues provided for the alga by the salamander

    Summering on the bank: Seasonal distribution and abundance of monkfish on Georges Bank.

    No full text
    The American monkfish is an important commercial species that is widely distributed across a range of depths and temperatures from North Carolina to southern Nova Scotia, including on Georges Bank. We examined changes in the seasonal distribution and relative abundance of monkfish in the scallop access areas in Closed Area I and Closed Area II on Georges Bank using catch data from a three-year seasonal scallop dredge survey. Over the course of the survey, more than 6,000 monkfish were caught and measured, and clear seasonal changes in monkfish abundance were documented. Monkfish catch peaked in the summer and early fall when they were caught across the entire survey area, while they were caught only in deeper waters at the edges of the bank in the winter. Monkfish relative abundance was modeled using a generalized linear mixed model with a Tweedie distribution, and the final model, with month, depth, and bottom temperature as fixed effects, effectively explained the seasonal shifts in the location and relative abundance of monkfish observed during this study. The results suggest that monkfish movements are driven by seasonal changes in bottom temperature. Management measures for monkfish are determined primarily based on data collected during the Northeast Fisheries Science Center bottom trawl surveys, yet this survey catches few monkfish, adding uncertainty to stock assessments. Our research indicates that increasing the use of dredge surveys to collect data on monkfish would be a positive step toward improving monkfish assessments. If monkfish movements are impacted by changes in thermal habitat, their distributions may shift in response to climate change, increasing the need for improved monkfish assessment strategies to effectively manage the species in the future

    Families and Emotions

    No full text

    FOR A NONSPECIESIST CRIMINOLOGY: ANIMAL ABUSE AS AN OBJECT OF STUDY*

    No full text
    corecore