178 research outputs found

    QUEST-DMC: Background Modelling and Resulting Heat Deposit for a Superfluid Helium-3 Bolometer

    Get PDF
    We report the results of radioactivity assays and heat leak calculations for a range of common cryogenic materials, considered for use in the QUEST-DMC superfluid 3He dark matter detector. The bolometer, instrumented with nanomechanical resonators, will be sensitive to energy deposits from dark matter interactions. Events from radioactive decays and cosmic rays constitute a significant background and must be precisely modelled, using a combination of material screening and Monte Carlo simulations. However, the results presented here are of wider interest for experiments and quantum devices sensitive to minute heat leaks and spurious events, thus we present heat leak per unit mass or surface area for every material studied. This can inform material choices for other experiments, especially if underground operation is considered – where the radiogenic backgrounds will dominate even at shallow depths

    QUEST-DMC:Background Modelling and Resulting Heat Deposit for a Superfluid Helium-3 Bolometer

    Get PDF
    We report the results of radioactivity assays and heat leak calculations for a range of common cryogenic materials, considered for use in the QUEST-DMC superfluid 3He dark matter detector. The bolometer, instrumented with nanomechanical resonators, will be sensitive to energy deposits from dark matter interactions. Events from radioactive decays and cosmic rays constitute a significant background and must be precisely modelled, using a combination of material screening and Monte Carlo simulations. However, the results presented here are of wider interest for experiments and quantum devices sensitive to minute heat leaks and spurious events, thus we present heat leak per unit mass or surface area for every material studied. This can inform material choices for other experiments, especially if underground operation is considered – where the radiogenic backgrounds will dominate even at shallow depths

    QUEST-DMC superfluid <sup>3</sup>He detector for sub-GeV dark matter

    Get PDF
    The focus of dark matter searches to date has been on Weakly Interacting Massive Particles (WIMPs) in the GeV/c2-TeV/c2 mass range. The direct, indirect and collider searches in this mass range have been extensive but ultimately unsuccessful, providing a strong motivation for widening the search outside this range. Here we describe a new concept for a dark matter experiment, employing superfluid 3He as a detector for dark matter that is close to the mass of the proton, of order 1 GeV/c2. The QUEST-DMC detector concept is based on quasiparticle detection in a bolometer cell by a nanomechanical resonator. In this paper we develop the energy measurement methodology and detector response model, simulate candidate dark matter signals and expected background interactions, and calculate the sensitivity of such a detector. We project that such a detector can reach sub-eV nuclear recoil energy threshold, opening up new windows on the parameter space of both spin-dependent and spin-independent interactions of light dark matter candidates

    Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment

    Get PDF
    The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data

    QUEST-DMC superfluid 3 He detector for sub-GeV dark matter

    Get PDF
    The focus of dark matter searches to date has been on Weakly Interacting Massive Particles (WIMPs) in the GeV/c2-TeV/c2 mass range. The direct, indirect and collider searches in this mass range have been extensive but ultimately unsuccessful, providing a strong motivation for widening the search outside this range. Here we describe a new concept for a dark matter experiment, employing superfluid 3He as a detector for dark matter that is close to the mass of the proton, of order 1 GeV/c2. The QUEST-DMC detector concept is based on quasiparticle detection in a bolometer cell by a nanomechanical resonator. In this paper we develop the energy measurement methodology and detector response model, simulate candidate dark matter signals and expected background interactions, and calculate the sensitivity of such a detector. We project that such a detector can reach sub-eV nuclear recoil energy threshold, opening up new windows on the parameter space of both spin-dependent and spin-independent interactions of light dark matter candidates

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    • …
    corecore