3 research outputs found
Mycoflora of the 'green water' culture system of tiger shrimp Penaeus monodon Fabricius
This study was conducted to quantify and characterize the mycoflora associated with the ‘green water’ culture system of Penaeus monodon. Samples of water, tilapia gut and mucus, and shrimp hepatopancreas from three shrimp farms were collected during 15, 30, 45 and 60 days of culture (DOC). Results showed that high fungal loads were observed in tilapia gut (total: 117–1352 colony forming unit (CFU) 5 cm hind gut−1; yeasts: 0–136 CFU 5 cm hind gut−1) and mucus (total: 12–311 CFU (5 cm2)−1; yeasts: 0–88 CFU (5 cm2)−1), while minimal fungal populations were observed in water samples (total: 0–110CFU mL−1; yeasts: 0–5 CFU ml−1). Shrimp hepatopancreas harboured a very low number of filamentous fungi (0–27 CFU 0.1 g−1) and yeasts (0–7CFU 0.1 g−1) especially at 60 DOC. The filamentous fungal isolates were dominated by Penicillium and Aspergillus species, while the yeast populations were dominated by Rhodotorula and Saccharomyces species. The dominance of these fungi on tilapia mucus and gut and their presence in the rearing water might play an important role in the overall mechanisms involved in the control of luminous Vibrio in the ‘green water’ grow-out culture of P. monodon
Formalin as an alternative to trifluralin as prophylaxis against fungal infection in mud crab Scylla serrata (Forsskål) larvae
The toxicity of formalin and trifluralin to the larval stages of the mud crab Scylla serrata was compared in a static bioassay. Prophylactic doses of 5, 10, 15, 20 and 25 μg L−1 formalin and 0.05, 0.1, 0.2, 0.4 and 0.8 μg L−1 trifluralin were used. Toxicity was assessed on the basis of survival of larvae after 24, 48, 72 and 96 h exposure to the test chemicals and metamorphosis to the next larval stage. Result shows that larval survival in all stages was significantly reduced at concentrations of 20 and 25 μg L−1 formalin whereas larvae were able to tolerate all trifluralin treatments. However, larvae became more tolerant to high formalin concentrations as the larval stage progressed. Survival was better at 5, 10 and 15 μg L−1 formalin and in all trifluralin treatments than the control in almost all the larval stages. Faster metamorphosis was observed at 5 and 10 μg L−1 formalin and 0.05, 0.1 and 0.2 μg L−1 trifluralin concentrations. Doses of formalin and trifluralin obtained from the toxicity experiments were applied as prophylaxis to newly hatched larvae in white plastic basins. Prophylactic doses of 5 and 10 μg L−1 formalin and 0.05 and 0.1 μg L−1 trifluralin applied every other day were found to be effective in enhancing survival and larval development to megalopa compared with control. However, no megalopae survived to crab instar in all formalin treatments. Although the use of fungicides in rearing systems resulted in higher survival compared with controls, other strategies (i.e. maintenance of good water quality and hygienic practices in the hatchery) should be further investigated as an alternative to the use of chemicals in hatcheries