731 research outputs found

    Spatially resolved physical and chemical properties of the planetary nebula NGC 3242

    Full text link
    Optical integral-field spectroscopy was used to investigate the planetary nebula NGC 3242. We analysed the main morphological components of this source, including its knots, but not the halo. In addition to revealing the properties ofthe physical and chemical nature of this nebula, we also provided reliable spatially resolved constraints that can be used for future photoionisation modelling of the nebula. The latter is ultimately necessary to obtain a fully self-consistent 3D picture of the physical and chemical properties of the object. The observations were obtained with the VIMOS instrument attached to VLT-UT3. Maps and values for specific morphological zones for the detected emission-lines were obtained and analysed with routines developed by the authors to derive physical and chemical conditions of the ionised gas in a 2D fashion. We obtained spatially resolved maps and mean values of the electron densities, temperatures, and chemical abundances, for specific morphological structures in NGC 3242. These results show the pixel-to-pixel variations of the the small- and large-scale structures of the source. These diagnostic maps provide information free from the biases introduced by traditional single long-slit observations. In general, our results are consistent with a uniform abundance distribution for the object, whether we look at abundance maps or integrated fluxes from specified morphological structures. The results indicate that special care should be taken with the calibration of the data and that only data with extremely good signal-to-noise ratio and spectral coverage should be used to ensure the detection of possible spatial variations.Comment: 11 pages, 8 figures accepted for publication in Astronomy & Astrophysic

    Magnetic fields around evolved stars: further observations of H2_2O maser polarization

    Get PDF
    We aim to detect the magnetic field and infer its properties around four AGB stars using H2_2O maser observations. The sample we observed consists of the following sources: the semi-regular variable RT Vir and the Mira variables AP Lyn, IK Tau, and IRC+60370. We observed the 61,652,3_{1,6}-5_{2,3} H2_2O maser rotational transition, in full-polarization mode, to determine its linear and circular polarization. Based on the Zeeman effect, one can infer the properties of the magnetic field from the maser polarization analysis. We detected a total of 238 maser features, in three of the four observed sources. No masers were found toward AP Lyn. The observed masers are all located between 2.4 and 53.0 AU from the stars. Linear and circular polarization was found in 18 and 11 maser features, respectively. We more than doubled the number of AGB stars in which magnetic field has been detected from H2_2O maser polarization, as our results confirm the presence of fields around IK Tau, RT Vir and IRC+60370. The strength of the field along the line of sight is found to be between 47 and 331 mG in the H2_2O maser region. Extrapolating this result to the surface of the stars, assuming a toroidal field (\propto r1^{-1}), we find magnetic fields of 0.3-6.9 G on the stellar surfaces. If, instead of a toroidal field, we assume a poloidal field (\propto r2^{-2}), then the extrapolated magnetic field strength on the stellar surfaces are in the range between 2.2 and \sim115 G. Finally, if a dipole field (\propto r3^{-3}) is assumed, the field strength on the surface of the star is found to be between 15.8 and \sim1945 G. The magnetic energy of our sources is higher than the thermal and kinetic energy in the H2_2O maser region of this class of objects. This leads us to conclude that, indeed, magnetic fields probably play an important role in shaping the outflows of evolved stars. (abridged)Comment: 15 pages, 5 figures, 7 tables. Accepted for publication in A&

    The detached dust shells around the carbon AGB stars R Scl and V644 Sco

    Get PDF
    Detached shells are believed to be created during a thermal pulse, and constrain the time scales and physical properties of one of the main drivers of late stellar evolution. We aim at determining the morphology of the detached dust shells around the carbon AGB stars R Scl and V644 Sco, and compare this to observations of the detached gas shells. We observe the polarised, dust-scattered stellar light around these stars using the PolCor instrument mounted on the ESO 3.6m telescope. Observations were done with a coronographic mask to block out the direct stellar light. The polarised images clearly show the detached shells. Using a dust radiative transfer code to model the dust-scattered polarised light, we constrain the radii and widths of the shells to 19.5 arcsec and 9.4 arcsec for the detached dust shells around R Scl and V644 Sco, respectively. Both shells have an overall spherical symmetry and widths of approx. 2 arcsec. For R Scl we can compare the observed dust emission directly with high spatial-resolution maps of CO(3-2) emission from the shell observed with ALMA. We find that the dust and gas coincide almost exactly, indicating a common evolution. The data presented here for R Scl are the most detailed observations of the entire dusty detached shell to date. For V644 Sco these are the first direct measurements of the detached shell. Also here we find that the dust most likely coincides with the gas shell. The observations are consistent with a scenario where the detached shells are created during a thermal pulse. The determined radii and widths will constrain hydrodynamical models describing the pre-pulse mass loss, the thermal pulse, and post-pulse evolution of the star

    Maximum level and time to peak of dam-break waves on mobile horizontal bed

    Get PDF
    Journal of Hydraulic Engineering, Vol. 135, No. 11, November 1, 2009This experimental study focuses the influence of bed material mobility and initial downstream water level on maximum water level and time to peak of dam-break waves. It covers horizontal bed conditions on fixed bed, sand bed, and pumice bed. Results include water surface level time evolution, maxima wave levels and time to peak. The influence of bed material mobility and downstream water level was identified and characterized, stressing the importance of using mathematical models with appropriate sediment transport formulations instead of purely hydrodynamic models to simulate dam-break waves on mobile bed channels

    Organised turbulence over mobile and immobile hydraulically rough boundaries

    Get PDF
    33rd IAHR Congress: Water Engineering for a Sustainable EnvironmentThe present work is aimed at the study of near-bed organised turbulence over mobile and immobile, porous, hydraulically rough boundaries. The bed was permeable and composed of non-cohesive sediments. Two data sets were analysed, characterised by the same u*. The mobile bed data featured generalised sediment transport for all size fractions smaller than the d90. The fixed bed was obtained as result of an armouring process. Comparison of these data sets reveals differences on such parameters of the bursting cycle as the maximum shear stress and the transported momentum. These results point to a reorganization of turbulence, in the near-bed region, when the bed is mobile. The impacts of these reorganization are discussed, namely in what concerns the third order moments of the distributions of the velocity fluctuations

    The Herschel Planetary Nebula Survey (HerPlaNS) - a comprehensive dusty photoionization model of NGC6781

    Get PDF
    We perform a comprehensive analysis of the planetary nebula (PN) NGC6781 to investigate the physical conditions of each of its ionized, atomic, and molecular gas and dust components and the object's evolution, based on panchromatic observational data ranging from UV to radio. Empirical nebular elemental abundances, compared with theoretical predictions via nucleosynthesis models of asymptotic giant branch (AGB) stars, indicate that the progenitor is a solar-metallicity, 2.25-3.0 Msun initial-mass star. We derive the best-fit distance of 0.46 kpc by fitting the stellar luminosity (as a function of the distance and effective temperature of the central star) with the adopted post-AGB evolutionary tracks. Our excitation energy diagram analysis indicate high excitation temperatures in the photodissociation region (PDR) beyond the ionized part of the nebula, suggesting extra heating by shock interactions between the slow AGB wind and the fast PN wind. Through iterative fitting using the Cloudy code with empirically-derived constraints, we find the best-fit dusty photoionization model of the object that would inclusively reproduce all of the adopted panchromatic observational data. The estimated total gas mass (0.41 Msun) corresponds to the mass ejected during the last AGB thermal pulse event predicted for a 2.5 Msun initial-mass star. A significant fraction of the total mass (about 70 percent) is found to exist in the PDR, demonstrating the critical importance of the PDR in PNe that are generally recognized as the hallmark of ionized/H+ regions.Comment: 34 pages, 13 Figures and 16 Tables, accepted for publication in the Astrophysical Journal Supplement Serie

    A conceptual model for sheet-flow drawn from rapid granular flow theories

    Get PDF
    33rd IAHR Congress: Water Engineering for a Sustainable EnvironmentThis paper is aimed at presenting i) a simple, yet sound, conceptual model applicable to the simulation of erosion, deposition and transport of cohesionless sediment in stratified flows under high shear stresses and ii) numerical solutions in idealized unsteady flow non-equilibrium transport situations. The conceptual model for the granular phase comprises 2DV mass and momentum and energy equations and constitutive equations, all derived within the dense limit of the Chapman-Enskog kinetic theory. 1D shallow-flow conservation and closure equations are derived for the fluid-granular mixture. Formulas for the average velocity in the transport layers, the vertical net flux of sediment mass and the thickness of the transport layer are thus obtained. Numerical solutions for dam-break flows over cohesionless mobile beds in prismatic and non-prismatic channels are obtained and discussed

    Polyphosphates and poly-β-hydroxybutyrate granules identification through quantitative image analysis in enhanced biological phosphorus removal systems

    Get PDF
    Enhanced biological phosphorus removal (EBPR) is a widely implemented technique for having the potential to cheaply and reliably remove phosphate from wastewater treatment processes, than traditional chemical methods. EBPR is performed by operating the system sequentially with anaerobic and aerobic conditions. Several studies were already performed ranging from different strategies for the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) to modeling both types of bacterial activities. Until now, slight attention has been given to the development of newer, faster, simpler, and better suited monitoring techniques for this type of system. This work is focused on the development of image analysis techniques for polyphosphates and poly-β-hydroxybutyrate granules in EBPR systems since off-line analyses are labor intensive and not able to be performed in full-scale plants. A lab-scale sequencing batch reactor fed with synthetic wastewater containing volatile fatty acids (VFAs) and orthophosphate was used. The reactor had a working volume of 4 L and was operated with a cycle time of 6 h consisting of 2 h anaerobic, 3 h aerobic, 50 min settling and decanting, and 5 min anaerobic idle periods. In each cycle, 2 L of synthetic wastewater was fed to the reactor in the first 5 min of the anaerobic period, resulting in a hydraulic retention time (HRT) of 12 h. The pH was controlled during both the anaerobic and aerobic periods around 7, and the temperature was controlled at 30 ºC in order to provide selective advantages to GAOs over PAOs. The ratio between chemical oxygen demand (COD) and P in the feed was kept at 10 (gCOD/g P). Biomass samples were collected at the end of the anaerobic and aerobic phases and fixed with phosphate buffer saline solution (PBS) and ethanol. Two fluorescence staining methods were used: (1) DAPI for poly-P identification; and (2) nile blue for poly-β-hydroxybutyrate granules. So far, promising results were achieved regarding the type of images achieved by these fluorescence staining methods and the image analysis procedures still under development
    corecore